Abstract
Abstract
Background
Although structural and functional changes of the striatum and hippocampus are present in familial Alzheimer’s disease, little is known about the effects of specific gene mutation or disease progression on their related neural circuits. This study was to evaluate the effects of known pathogenic gene mutation and disease progression on the striatum- and hippocampus-related neural circuits, including frontostriatal and hippocampus-posterior cingulate cortex (PCC) pathways.
Methods
A total of 102 healthy mutation non-carriers, 40 presymptomatic mutation carriers (PMC), and 30 symptomatic mutation carriers (SMC) of amyloid precursor protein (APP), presenilin 1 (PS1), or presenilin 2 gene, with T1 structural MRI, diffusion tensor imaging, and resting-state functional MRI were included. Representative neural circuits and their key nodes were obtained, including bilateral caudate-rostral middle frontal gyrus (rMFG), putamen-rMFG, and hippocampus-PCC. Volumes, diffusion indices, and functional connectivity of circuits were compared between groups and correlated with neuropsychological and clinical measures.
Results
In PMC, APP gene mutation carriers showed impaired diffusion indices of caudate-rMFG and putamen-rMFG circuits; PS1 gene mutation carriers showed increased fiber numbers of putamen-rMFG circuit. SMC showed increased diffusivity of the left hippocampus-PCC circuit and volume reduction of all regions as compared with PMC. Imaging measures especially axial diffusivity of the representative circuits were correlated with neuropsychological measures.
Conclusions
APP and PS1 gene mutations affect frontostriatal circuits in a different manner in familial Alzheimer’s disease; disease progression primarily affects the structure of hippocampus-PCC circuit. The structural connectivity of both frontostriatal and hippocampus-PCC circuits is associated with general cognitive function. Such findings may provide further information about the imaging biomarkers for early identification and prognosis of familial Alzheimer’s disease, and pave the way for early diagnosis, gene- or circuit-targeted treatment, and even prevention.
Funder
Beijing Postdoctoral Research Foundation
Key Programme
National Key Scientific Instrument and Equipment Development Projects of China
Beijing Municipal Administration of Hospitals
Beijing Municipal Science & Technology Commission for the Beijing Brain Initiative
Beijing Municipal Human Resources and Social Security Bureau
Beijing Municipal Commission of Health and Family Planning
Publisher
Springer Science and Business Media LLC
Subject
Cognitive Neuroscience,Clinical Neurology,Neurology
Reference73 articles.
1. Collaborators GBDD. Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;181:88–106.
2. Jia L, Quan M, Fu Y, Zhao T, Li Y, Wei C, Tang Y, Qin Q, Wang F, Qiao Y, et al. Dementia in China: epidemiology, clinical management, and research advances. Lancet Neurol. 2019; https://doi.org/10.1016/S1474-4422(19)30290-X.
3. Knopman DS. Lowering of amyloid-beta by beta-secretase inhibitors - some informative failures. N Engl J Med. 2019;38015:1476–8.
4. Canter RG, Penney J, Tsai LH. The road to restoring neural circuits for the treatment of Alzheimer's disease. Nature. 2016;5397628:187–96.
5. Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R, Wherrett J, Naglie G, Hamani C, Smith GS, et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease. Ann Neurol. 2010;684:521–34.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献