Author:
Wang Shang,Zhu Taiyang,Ni Wanyan,Zhou Chao,Zhou Hui,Lin Li,Hu Yuting,Sun Xiaoyu,Han Jingjing,Zhou Yan,Jin Guoliang,Zu Jie,Shi Hongjuan,Yang Xingxing,Zhang Zuohui,Hua Fang
Abstract
Abstract
Background
Toll-like receptor 3 (TLR3) plays an important role in the immune/inflammatory response in the nervous system and is a main pathological feature of Alzheimer’s disease (AD). This study investigates the role of early activation of TLR3 in the pathophysiological process of AD.
Methods
In the experiment, the agonist of TLR3, Poly(I:C), was intraperitoneally injected into the APP/PS1 mouse model of AD and wild-type control mice starting from the age of 4 to 9 months. At the age of 14 months, behavioral tests were conducted. Western blot and immunohistochemistry staining were used to evaluate the level of amyloid β-protein (Aβ), the activation of inflammatory cells, and neuron loss. In addition, the levels of inflammatory cytokines were measured using a quantitative polymerase chain reaction.
Results
The results demonstrated that the early activation of TLR3 attenuated neuronal loss and neurobehavioral dysfunction. Moreover, the early activation of TLR3 reduced Aβ deposition, inhibited the activation of microglia and astrocytes, and decreased the transcription of pro-inflammatory factors in the hippocampus.
Conclusions
The results indicated that the activation of TLR3 by Poly (I:C) in the early stage of development of AD in a mouse model attenuated neuron loss and improved neurobehavioral functions. The underlying mechanisms could be attributed to its role in Aβ clearance, the inhibition of glial cells, and the regulation of neuroinflammation in the hippocampus.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cognitive Neuroscience,Neurology (clinical),Neurology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献