Identification of profiles associated with conversions between the Alzheimer’s disease stages, using a machine learning approach

Author:

Dauphinot Virginie,Laurent Marie,Prodel Martin,Civet Alexandre,Vainchtock Alexandre,Moutet Claire,Krolak-Salmon Pierre,Garnier-Crussard Antoine

Abstract

Abstract Background The identification of factors involved in the conversion across the different Alzheimer’s disease (AD) stages is crucial to prevent or slow the disease progression. We aimed to assess the factors and their combination associated with the conversion across the AD stages, from mild cognitive impairment to dementia, at a mild, moderate or severe stage and to identify profiles associated with earliest/latest conversion across the AD stages. Methods In this study conducted on the real-life MEMORA cohort data collected from January 1, 2013, and December 31, 2019, three cohorts were selected depending on the baseline neurocognitive stage from a consecutive sample of patients attending a memory center, aged between 50 and 90 years old, with a diagnosis of AD during the follow-up, and with at least 2 visits at 6 months to 1 year of interval. A machine learning approach was used to assess the relationship between factors including socio-demographic characteristics, comorbidities and history of diseases, prescription of drugs, and geriatric hospitalizations, and the censored time to conversion from mild cognitive impairment to AD dementia, from the mild stage of dementia to the moderate or severe stages of AD dementia, and from the moderate stage of AD dementia to the severe stage. Profiles of earliest/latest conversion compared to median time to conversion across stages were identified. The median time to conversion was estimated with a Kaplan-Meier estimator. Results Overall, 2891 patients were included (mean age 77±9 years old, 65% women). The median time of follow-up was 28 months for mild cognitive impairment (MCI) patients, 33 months for mild AD dementia and 30 months for moderate AD dementia. Among the 1264 patients at MCI stage, 61% converted to AD dementia (median time to conversion: 25 months). Among the 1142 patients with mild AD dementia, 59% converted to moderate/severe stage (median time: 23 months) and among the 1332 patients with moderate AD dementia, 23% converted to severe stage (Q3 time to conversion: 22 months). Among the studied factors, cardiovascular comorbidities, anxiety, social isolation, osteoporosis, and hearing disorders were identified as being associated with earlier conversion across stages. Symptomatic treatment i.e. cholinesterase inhibitors for AD was associated with later conversion from mild stage of dementia to moderate/severe stages. Conclusion This study based on a machine learning approach allowed to identify potentially modifiable factors associated with conversion across AD stages for which timely interventions may be implemented to delay disease progression.

Funder

Roche France, France

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3