Abstract
Abstract
Background
Kallikrein-8 (KLK8) might be an early blood-biomarker of Alzheimer’s disease (AD). We examined whether blood KLK8 is elevated in persons with amnestic mild cognitive impairment (aMCI) which is a precursor of AD, compared to cognitively unimpaired (CU) controls.
Methods
Forty cases and 80 controls, matched by sex and age (± 3years), were participants of the longitudinal population-based Heinz Nixdorf Recall study (baseline: 2000–2003). Standardized cognitive performance was assessed 5 (T1) and 10 years after baseline (T2). Cases were CU at T1 and had incidental aMCI at T2. Controls were CU at T1 and T2. Blood KLK8 was measured at T2. Using multiple logistic regression the association between KLK8 in cases vs. controls was investigated by estimating odds ratios (OR) and 95% confidence intervals (95%CI), adjusted for inter-assay variability and freezing duration. Using receiver operating characteristic (ROC) analysis, the diagnostic accuracy of KLK8 was determined by estimating the area under the curve (AUC) and 95%CI (adjusted for inter-assay variability, freezing duration, age, sex).
Results
Thirty-seven participants with aMCI vs. 72 CU (36.7%women, 71.0±8.0 (mean±SD) years) had valid KLK8 measurements. Mean KLK8 was higher in cases than in controls (911.6±619.8 pg/ml vs.783.1±633.0 pg/ml). Fully adjusted, a KLK8 increase of 500pg/ml was associated with a 2.68 (1.05–6.84) higher chance of having aMCI compared to being CU. With an AUC of 0.92 (0.86–0.97), blood KLK8 was a strong discriminator for aMCI and CU.
Conclusion
This is the first population-based study to demonstrate the potential clinical utility of blood KLK8 as a biomarker for incipient AD.
Funder
Universitätsklinikum Essen
Publisher
Springer Science and Business Media LLC
Subject
Cognitive Neuroscience,Neurology (clinical),Neurology
Reference53 articles.
1. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12(4):357–67.
2. Jack CR Jr, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain. 2009;132(Pt 5):1355–65.
3. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62.
4. Andreasson U, Blennow K, Zetterberg H. Update on ultrasensitive technologies to facilitate research on blood biomarkers for central nervous system disorders. Alzheimers Dement. 2016;3:98–102.
5. Tamura H, Ishikawa Y, Hino N, Maeda M, Yoshida S, Kaku S, et al. Neuropsin is essential for early processes of memory acquisition and Schaffer collateral long-term potentiation in adult mouse hippocampus in vivo. J Physiol. 2006;570(Pt 3):541–51.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献