Exploring shared neural substrates underlying cognition and gait variability in adults without dementia

Author:

Byun Seonjeong,Lee Hyang Jun,Kim Jun Sung,Choi Euna,Lee Subin,Kim Tae Hui,Kim Jae Hyoung,Han Ji Won,Kim Ki Woong

Abstract

Abstract Background High gait variability is associated with neurodegeneration and cognitive impairments and is predictive of cognitive impairment and dementia. The objective of this study was to identify cortical or subcortical structures of the brain shared by gait variability measured using a body-worn tri-axial accelerometer (TAA) and cognitive function. Methods This study is a part of a larger population-based cohort study on cognitive aging and dementia. The study included 207 participants without dementia, with a mean age of 72.6, and 45.4% of them are females. We conducted standardized diagnostic interview including a detailed medical history, physical and neurological examinations, and laboratory tests for cognitive impairment. We obtained gait variability during walking using a body-worn TAA along and measured cortical thickness and subcortical volume from brain magnetic resonance (MR) images. We cross-sectionally investigated the cortical and subcortical neural structures associated with gait variability and the shared neural substrates of gait variability and cognitive function. Results Higher gait variability was associated with the lower cognitive function and thinner cortical gray matter but not smaller subcortical structures. Among the clusters exhibiting correlations with gait variability, one that included the inferior temporal, entorhinal, parahippocampal, fusiform, and lingual regions in the left hemisphere was also associated with global cognitive and verbal memory function. Mediation analysis results revealed that the cluster’s cortical thickness played a mediating role in the association between gait variability and cognitive function. Conclusion Gait variability and cognitive function may share neural substrates, specifically in regions related to memory and visuospatial navigation.

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3