Abstract
Abstract
Background
Alzheimer disease (AD) is the most common cause of dementia. Preclinical AD is the period during which early AD brain changes are present but cognitive symptoms have not yet manifest. The presence of AD brain changes can be ascertained by molecular biomarkers obtained via imaging and lumbar puncture. However, the use of these methods is limited by cost, acceptability, and availability. The preclinical stage of AD may have a subtle functional signature, which can impact complex behaviours such as driving. The objective of the present study was to evaluate the ability of in-vehicle GPS data loggers to distinguish cognitively normal older drivers with preclinical AD from those without preclinical AD using machine learning methods.
Methods
We followed naturalistic driving in cognitively normal older drivers for 1 year with a commercial in-vehicle GPS data logger. The cohort included n = 64 individuals with and n = 75 without preclinical AD, as determined by cerebrospinal fluid biomarkers. Four Random Forest (RF) models were trained to detect preclinical AD. RF Gini index was used to identify the strongest predictors of preclinical AD.
Results
The F1 score of the RF models for identifying preclinical AD was 0.85 using APOE ε4 status and age only, 0.82 using GPS-based driving indicators only, 0.88 using age and driving indicators, and 0.91 using age, APOE ε4 status, and driving. The area under the receiver operating curve for the final model was 0.96.
Conclusion
The findings suggest that GPS driving may serve as an effective and accurate digital biomarker for identifying preclinical AD among older adults.
Funder
Foundation for the National Institutes of Health
BrightFocus Foundation
Publisher
Springer Science and Business Media LLC
Subject
Cognitive Neuroscience,Clinical Neurology,Neurology
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献