Optimization algorithm for feedback and feedforward policies towards robot control robust to sensing failures

Author:

Kobayashi TaisukeORCID,Yoshizawa Kenta

Abstract

Abstract Background and problem statement Model-free or learning-based control, in particular, reinforcement learning (RL), is expected to be applied for complex robotic tasks. Traditional RL requires that a policy to be optimized is state-dependent, that means, the policy is a kind of feedback (FB) controllers. Due to the necessity of correct state observation in such a FB controller, it is sensitive to sensing failures. To alleviate this drawback of the FB controllers, feedback error learning integrates one of them with a feedforward (FF) controller. RL can be improved by dealing with the FB/FF policies, but to the best of our knowledge, a methodology for learning them in a unified manner has not been developed. Contribution In this paper, we propose a new optimization problem for optimizing both the FB/FF policies simultaneously. Inspired by control as inference, the proposed optimization problem considers minimization/maximization of divergences between trajectories, one is predicted by the composed policy and a stochastic dynamics model, and others are inferred as optimal/non-optimal ones. By approximating the stochastic dynamics model using variational method, we naturally derive a regularization between the FB/FF policies. In numerical simulations and a robot experiment, we verified that the proposed method can stably optimize the composed policy even with the different learning law from the traditional RL. In addition, we demonstrated that the FF policy is robust to the sensing failures and can hold the optimal motion.

Funder

Telecommunications Advancement Foundation Research Grant

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3