Abstract
AbstractTo control a robot performing cooperative work between a human and robot, not only the position but also the force must be controlled from the viewpoint of human–robot contact. In addition, when a robot is used for fitting and handling, tasks that are conventionally performed by experienced humans, controlling the grasping force and the force exerted by the joints can produce motions similar to those of humans and contribute to improving the success rate of the work. In the field of force control, in addition to direct force control, admittance control and impedance control are modes based on the relationship between position and force, which are known to be robust and safe. However, admittance control often becomes unstable when the robot comes into contact with a rigid body, and the performance of impedance control is degraded by friction. In this study, we aim to realize safe and accurate force control in cooperative work with humans. As a precursor, we propose admittance and impedance control, which is a series connection of conventional admittance control and impedance control. We show that the proposed force control is more robust, stable, and accurate than impedance control and admittance controls alone, or at least as good as them, when in contact with an unknown environment. Its basic effectiveness and practical usefulness are demonstrated through numerical simulations and experimental results.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation
Reference21 articles.
1. Yi S, Shuang S, Xinquan L, Hongliang R (2016) A miniature soft robotic manipulator based on novel fabrication methods. IEEE Robot Autom Lett 1(2):617–623
2. Michele G, Federico R, Gabriele F, Cecilia L (2013) A Feed-Forward Neural Network Learning the Inverse Kinetics of a Soft Cable-Driven Manipulator Moving in Three-Dimensional Space. In: Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, p 5033–5039
3. Michele G, Federico R, Marcello C, Andrea A, Gabriele F, Cecilia L (2012) A two dimensional inverse kinetics model of a cable driven manipulator inspired by the Octopus Arm. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation, p 3819–3824
4. Federico R, Michele G, Marcello C, Matteo C, Cecilia L (2014) Dynamic model of a multibending soft robot arm driven by cables. IEEE Trans Robotics 30(5):1109–1122
5. Giannaccini EM, Georgilas I, Horsfield I, Peiris HB, Lenz A, Pipe GA, Dogramadzi S (2014) A variable compliance, soft gripper. Autonom Robots 36(1–2):93–107
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献