Abstract
AbstractThe novel approach to physical security based on visible light communication (VLC) using an informative object-pointing and simultaneous recognition by high-framerate (HFR) vision systems is presented in this study. In the proposed approach, a convolutional neural network (CNN) based object detection method is used to detect the environmental objects that assist a spatiotemporal-modulated-pattern (SMP) based imperceptible projection mapping for pointing the desired objects. The distantly located HFR vision systems that operate at hundreds of frames per second (fps) can recognize and localize the pointed objects in real-time. The prototype of an artificial intelligence-enabled camera-projector (AiCP) system is used as a transmitter that detects the multiple objects in real-time at 30 fps and simultaneously projects the detection results by means of the encoded-480-Hz-SMP masks on to the objects. The multiple 480-fps HFR vision systems as receivers can recognize the pointed objects by decoding pixel-brightness variations in HFR sequences without any camera calibration or complex recognition methods. Several experiments were conducted to demonstrate our proposed method’s usefulness using miniature and real-world objects under various conditions.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献