One-touch calibration of hum-noise-based touch sensor for unknown users utilizing models trained by different users

Author:

Hsia Tzu-Hsuan,Okamoto ShogoORCID,Akiyama Yasuhiro,Yamada Yoji

Abstract

AbstractHum-noise-based touch sensors (HumTouch) are capable of recognizing human touch on semiconductive materials using the current leaking from the finger to the surface. Thus far, calibration for these hum-noise-based touch sensors has been performed for individual users because of the individual differences in hum-driven electric currents in human bodies. However, for applications designed for unknown users, time-consuming calibration for individual users is not preferred, and a new user should be able to use the sensor immediately. For this purpose, we propose a new calibration method for HumTouch. In this method, learning datasets collected from multiple people and a few extra samples from a new user are collectively used to establish a touch localization estimator. The estimator is computed using the kernel regression method with weighted samples from the new user. For a 20 $$\times $$ × 18 cm$$^2$$ 2 paper, the mean localization error is reduced from 1.24 cm to 0.90 cm with only one sample from the new user. Hence, a new user can establish a semipersonalized localization estimator by touching only one point on the surface. This method improves the localization performance of HumTouch sensors in an easy-to-access manner.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-Dimensional Localization of a Finger in Water Using Human Body Antenna Signals;2023 IEEE 12th Global Conference on Consumer Electronics (GCCE);2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3