Lifelogging caption generation via fourth-person vision in a human–robot symbiotic environment

Author:

Nakashima KazutoORCID,Iwashita Yumi,Kurazume Ryo

Abstract

AbstractAutomatic analysis of our daily lives and activities through a first-person lifelog camera provides us with opportunities to improve our life rhythms or to support our limited visual memories. Notably, to express the visual experiences, the task of generating captions from first-person lifelog images has been actively studied in recent years. First-person images involve scenes approximating what users actually see; therein, the visual cues are not enough to express the user’s context since the images are limited by his/her intention. Our challenge is to generate lifelog captions using a meta-perspective called “fourth-person vision”. The “fourth-person vision” is a novel concept which complementary exploits the visual information from the first-, second-, and third-person perspectives. First, we assume human–robot symbiotic scenarios that provide a second-person perspective from the camera mounted on the robot and a third-person perspective from the camera fixed in the symbiotic room. To validate our approach in this scenario, we collect perspective-aware lifelog videos and corresponding caption annotations. Subsequently, we propose a multi-perspective image captioning model composed of an image-wise salient region encoder, an attention module that adaptively fuses the salient regions, and a caption decoder that generates scene descriptions. We demonstrate that our proposed model based on the fourth-person concept can greatly improve the captioning performance against single- and double-perspective models.

Funder

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3