Terrain traversability prediction for off-road vehicles based on multi-source transfer learning

Author:

Inotsume HiroakiORCID,Kubota Takashi

Abstract

AbstractIn this paper, a novel terrain traversability prediction method is proposed for new operation environments. When an off-road vehicle is operated on rough terrains or slopes made up of unconsolidated materials, it is crucial to accurately predict terrain traversability to ensure efficient operations and avoid critical mobility risks. However, the prediction of traversability in new environments is challenging, especially for possibly risky terrains, because the traverse data available for such terrains is either limited or non-existent. To address this limitation, this study proposes an adaptive terrain traversability prediction method based on multi-source transfer Gaussian process regression. The proposed method utilizes the limited data available on low-risk terrains of the target environment to enhance the prediction accuracy on untraversed, possibly higher-risk terrains by leveraging past traverse experiences on multiple types of terrain surface. The effectiveness of the proposed method is demonstrated in scenarios where vehicle slippage and power consumption are predicted using a dataset of various terrain surfaces and geometries. In addition to predicting terrain traversability as continuous values, the utility of the proposed method is demonstrated in binary risk level classification of yet to be traversed steep terrains from limited data on safer terrains.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation

Reference34 articles.

1. Wong JY (2008) Theory of ground vehicles. Wiley, Hoboken

2. Chhaniyara S, Brunskill C, Yeomans B, Matthews M, Saaj C, Ransom S, Richter L (2012) Terrain trafficability analysis and soil mechanical property identification for planetary rovers: a survey. J Terramech 49(2):115–128

3. Papadakis P (2013) Terrain traversability analysis methods for unmanned ground vehicles: a survey. Eng Appl Artif Intell 26(4):1373–1385

4. Wei P, Sagarna R, Ke Y, Ong Y-S, Goh C-K(2017) Source-target similarity modelings for multi-source transfer gaussian process regression. In: International Conference on Machine Learning, pp. 3722– 3731

5. Inotsume H, Kubota T ( 2020) Slip prediction for exploration rover based on transfer learning. In: 2020 International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Confidence-Aware Prediction of Uneven Terrain Risk for Self-Supervised Learning by a Mobile Robot;2024 IEEE/SICE International Symposium on System Integration (SII);2024-01-08

2. Development of a Novel Low-Cost Wheel-Legged Active Suspension;2023 5th International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI);2023-12-01

3. Probabilistic Meta-Conv1D Driving Energy Prediction for Mobile Robots in Unstructured Terrains;IEEE Access;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3