Implementation of interactive control of a crane ship model in MATLAB/Simulink environment

Author:

Makarov OlegORCID,Yase Hayato,Harada Takashi

Abstract

AbstractThe increased demand for performing crane ship modeling has led to the necessity for fast and accurate numerical experiments. This paper presents an approach for creating a numerical model of a crane vessel with a suspended load that allows for real-time control of crane parts. The model is developed in the MATLAB/Simulink environment, which makes it possible to extend it further to the user's needs. The authors describe the approach to the calculation of wave-induced ship motions, presents the Simulink block model and describes the features encountered during the simulation process. The possibility of real-time control of the position of crane parts is also shown, keeping the calculation speed of the ship hydrodynamics.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reinforcement Learning for AI-Positioning of Suspended Load By a Crane Vessel;2024 10th International Conference on Electrical Engineering, Control and Robotics (EECR);2024-03-29

2. Implementation of the Crane Vessel Interactive Control Using the Constraint-Based Flexible Cable with a Variable Length;Advances in Mechanism and Machine Science;2023-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3