Recalling of multiple grasping methods from an object image with a convolutional neural network

Author:

Sanada MakotoORCID,Matsuo Tadashi,Shimada Nobutaka,Shirai Yoshiaki

Abstract

AbstractIn this study, a method for a robot to recall multiple grasping methods for a given object is proposed. The aim of this study was for robots to learn grasping methods for new objects by observing the grasping activities of humans in daily life without special instructions. For this setting, only one grasping motion was observed for an object at a time, and it was never known whether other grasping methods were possible for the object, although supervised learning generally requires all possible answers for each training input. The proposed method gives a solution for that learning situations by employing a convolutional neural network with automatic clustering of the observed grasping method. In the proposed method, the grasping methods are clustered during the process of learning of the grasping position. The method first recalls grasping positions and the network estimates the multi-channel heatmap such that each channel heatmap indicates one grasping position, then checks the graspability for each estimated position. Finally, the method recalls the hand shapes based on the estimated grasping position and the object’s shape. This paper describes the results of recalling multiple grasping methods and demonstrates the effectiveness of the proposed method.

Funder

Ritsumeikan Global Innovation Research Organization, Ritsumeikan University

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modelling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3