Abstract
AbstractThis paper presents a general methodology for the analysis and synthesis of a positive semi-definite system described by mass, damping and stiffness matrices that is often encountered in impedance control in robotics research. This general methodology utilizes the fundamental kinematic concept of rigid-body and non-rigid-body motions of which all motions consist. The rigid-body mode results in no net change in the potential energy from the stiffness matrix of the multiple degree-of-freedom (DoF) discrete mechanical system. Example of an unconstrained discrete mechanical system is presented to illustrate the theoretical principle as applied in obtaining the free and forced vibration responses, as well as the dynamic characteristics of the system in natural frequency, $$\omega_n$$
ω
n
and damping ratio, $$\zeta$$
ζ
. In addition, the methodology is applied to the impedance control of redundant robots. The rigid-body mode is equivalent to the motions of a redundant robot which result in no net change in potential energy, also called the zero-potential or ZP mode, of impedance control. Example of a redundant robot is used to demonstrate the application of the methodology in robotics. The dynamic characteristics of $$\omega _n$$
ω
n
and $$\zeta$$
ζ
in the modal space are analyzed, which can be synthesized to modulate the damping of the system analytically.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献