Kinematics of platform stabilization using a 3-PRS parallel manipulator

Author:

Udomsap Tossaporn,Chinchouryrang Sakda,Liampipat Siwat,Chanthasopeephan TeeranootORCID

Abstract

AbstractIn this paper, a 3-PRS (prismatic, revolute, and spherical) parallel manipulator for platform stabilization is designed. The main purpose of this device is to stabilize visual equipment, which is placed on top of a car to inspect electrical transmission cables, as part of routine maintenance. Due to the bulky and heavy infrared cameras used during inspections, a stabilizer platform has been designed to handle the weight of camera equipment up to 10 kg. This device consists of two major mechanisms. The first mechanism is able to adjust the angle of the camera. Thus, the user can focus the camera along the electric transmission lines. The second mechanism is stabilization. The mechanism serves to stabilize the orientation and position of the camera in the roll, pitch, and heave directions. To test the performance of the stabilization mechanism, the device is fed with the known value of the angle with regard to the input. As such, the device is trying to compensate for the change in angle. The results show that the errors between the input angles and compensated angles are in the range of 0.4–3%. Errors are seen to be within an acceptable range. It is significant that the resultant errors do not affect the orientation of the camera.

Funder

Thailand Science Research and Innovation

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FPID-RCP: A Control Method for a Swing-Type Wave Compensation Platform System;Journal of Marine Science and Engineering;2024-08-12

2. Conceptual Design and Kinematic Analysis of Hybrid Parallel Robot for Accurate Position and Orientation;2023 62nd Annual Conference of the Society of Instrument and Control Engineers (SICE);2023-09-06

3. Parasitic Motions of 3-PRS Parallel Mechanisms with Two Different Branch Chain Arrangements;Applied Sciences;2023-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3