Lightweight underwater robot developed for archaeological surveys and excavations
-
Published:2023-01-27
Issue:1
Volume:10
Page:
-
ISSN:2197-4225
-
Container-title:ROBOMECH Journal
-
language:en
-
Short-container-title:Robomech J
Author:
Hotta Shohei, Mitsui Yusuke, Suka Mizuki, Sakagami NorimitsuORCID, Kawamura Sadao
Abstract
AbstractThis paper reports the development of a lightweight remotely operated vehicle that performs underwater excavation work for archaeological surveys. Discovering underwater artifacts is generally difficult because they are in high risk areas and are often covered with sediment. To discover them, divers and large remotely operated vehicles must conduct excavation work with a manipulator(s). Nevertheless, accomplishing such tasks is difficult for small and portable underwater robots without a manipulator(s). As described herein, we developed a lightweight underwater robot of 35 kg that can remove sediment from the seabed or lake bottom using its thrusters instead of a manipulator. Numerous redundant thrusters are equipped with the robot to compensate the reaction force of the thrusters for sediment removal. Eight thrusters are arranged not only for sediment removal but also for fine maneuvering. First, through preliminary experiments, we investigated the potential use of a water flow generated using a pair of small marine thrusters to remove surface sediment. Next, we described the design and development of a lightweight underwater robot with eight thrusters and high-definition cameras for archaeological surveys. Finally, we conducted field experiments to demonstrate the sediment removal performance and usefulness of the developed robot.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation
Reference19 articles.
1. UNESCO (2013) Objective, methodology and techniques. In: Maarleveld TJ, Guérin U, Egger B (eds.) Manual for Activities Directed at Underwater Cultural Heritage: Guidelines to the Annex of the UNESCO 2001 Convention, pp. 111–126 2. Church RA, Warren DJ, Westrick RF (2010) Reefs, rigs, and wrecks: The 2009 field season of deep-water archaeology in the gulf of mexico. In: Proceedings of 2010 MTS/IEEE OCEANS Seattle, pp. 1–4 3. Gracias N, Ridao P, Garcia R, n JE, L’Hour M, Cibecchini F, Campos R, Carreras M, Ribas D, Palomeras N, Magi L, Palomer A, Nicosevici T, Prados R, Hegedüs R, Neumann L, de Filippo F, Mallios A (2013) Mapping the moon: Using a lightweight auv to survey the site of the 17th century ship ’la lune’. In: Proceedings of 2013 MTS/IEEE OCEANS Bergen, pp. 1–8 4. Allotta B, Costanzi R, Ridolfi A, Reggiannini M, Tampucci M, Scaradozzi D (2016) Archaeology oriented optical acquisitions through marta auv during arrows european project demonstration. In: Proceedings of OCEANS 2016 MTS/IEEE Monterey, pp. 1–4 5. Viswanathan VK, Lobo Z, Lupanow J, von Fock SS, Wood Z, Gambin T, Clark C (2017) Auv motion-planning for photogrammetric reconstruction of marine archaeological sites. In: Proceedings of 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5096–5103
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|