Lightweight underwater robot developed for archaeological surveys and excavations

Author:

Hotta Shohei,Mitsui Yusuke,Suka Mizuki,Sakagami NorimitsuORCID,Kawamura Sadao

Abstract

AbstractThis paper reports the development of a lightweight remotely operated vehicle that performs underwater excavation work for archaeological surveys. Discovering underwater artifacts is generally difficult because they are in high risk areas and are often covered with sediment. To discover them, divers and large remotely operated vehicles must conduct excavation work with a manipulator(s). Nevertheless, accomplishing such tasks is difficult for small and portable underwater robots without a manipulator(s). As described herein, we developed a lightweight underwater robot of 35 kg that can remove sediment from the seabed or lake bottom using its thrusters instead of a manipulator. Numerous redundant thrusters are equipped with the robot to compensate the reaction force of the thrusters for sediment removal. Eight thrusters are arranged not only for sediment removal but also for fine maneuvering. First, through preliminary experiments, we investigated the potential use of a water flow generated using a pair of small marine thrusters to remove surface sediment. Next, we described the design and development of a lightweight underwater robot with eight thrusters and high-definition cameras for archaeological surveys. Finally, we conducted field experiments to demonstrate the sediment removal performance and usefulness of the developed robot.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A quadrotor UAV-based survey of magnetic anomaly tensor field of an iron ship;International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications, Shenzhen, China, May 19–22, 2024;2024-08-23

2. Marine Inspection: Implementation and Advanced Applications of a Remotely Operated Underwater Robot for Exploration in Challenging Marine Environments;2024 Second International Conference on Smart Technologies for Power and Renewable Energy (SPECon);2024-04-02

3. EASA Expert Group: Science, Technology, Engineering, Mathematics in Arts and Culture (STEMAC);Proceedings of the European Academy of Sciences and Arts;2024-03-28

4. Design and Verification of Deep Submergence Rescue Vehicle Motion Control System;Sensors;2023-07-28

5. Micro-needle Dynamic Anchoring Foot Design for Underwater Drilling Robot;Intelligent Robotics and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3