Intelligent multi-agent model for energy-efficient communication in wireless sensor networks

Author:

Saleem Kiran,Wang Lei,Bharany Salil,Ouahada Khmaies,Rehman Ateeq Ur,Hamam Habib

Abstract

AbstractThe research addresses energy consumption, latency, and network reliability challenges in wireless sensor network communication, especially in military security applications. A multi-agent context-aware model employing the belief-desire-intention (BDI) reasoning mechanism is proposed. This model utilizes a semantic knowledge-based intelligent reasoning network to monitor suspicious activities within a prohibited zone, generating alerts. Additionally, a BDI intelligent multi-level data transmission routing algorithm is proposed to optimize energy consumption constraints and enhance energy-awareness among nodes. The energy optimization analysis involves the Energy Percent Dataset, showcasing the efficiency of four wireless sensor network techniques (E-FEERP, GTEB, HHO-UCRA, EEIMWSN) in maintaining high energy levels. E-FEERP consistently exhibits superior energy efficiency (93 to 98%), emphasizing its effectiveness. The Energy Consumption Dataset provides insights into the joule measurements of energy consumption for each technique, highlighting their diverse energy efficiency characteristics. Latency measurements are presented for four techniques within a fixed transmission range of 5000 m. E-FEERP demonstrates latency ranging from 3.0 to 4.0 s, while multi-hop latency values range from 2.7 to 2.9 s. These values provide valuable insights into the performance characteristics of each technique under specified conditions. The Packet Delivery Ratio (PDR) dataset reveals the consistent performance of the techniques in maintaining successful packet delivery within the specified transmission range. E-FEERP achieves PDR values between 89.5 and 92.3%, demonstrating its reliability. The Packet Received Data further illustrates the efficiency of each technique in receiving transmitted packets. Moreover the network lifetime results show E-FEERP consistently improving from 2550 s to round 925. GTEB and HHO-UCRA exhibit fluctuations around 3100 and 3600 s, indicating variable performance. In contrast, EEIMWSN consistently improves from round 1250 to 4500 s.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3