Image life trails based on contrast reduction models for face counter-spoofing

Author:

Katika Balaji RaoORCID,Karthik Kannan

Abstract

AbstractNatural face images are both content and context-rich, in the sense that they carry significant immersive information via depth cues embedded in the form of self-shadows or a space varying blur. Images of planar face prints, on the other hand, tend to have lower contrast and also suppressed depth cues. In this work, a solution is proposed, to detect planar print spoofing by enhancing self-shadow patterns present in face images. This process is facilitated and siphoned via the application of a non-linear iterative functional map, which is used to produce a contrast reductionist image sequence, termed as an image life trail. Subsequent images in this trail tend to have lower contrast in relation to the previous iteration. Differences taken across this image sequence help in bringing out the self-shadows already present in the original image. The proposed solution has two fronts: (i) a calibration and customization heavy 2-class client specific model construction process, based on self-shadow statistics, in which the model has to be trained with respect to samples from the new environment, and (ii) a subject independent and virtually environment independent model building procedure using random scans and Fourier descriptors, which can be cross-ported and applied to new environments without prior training. For the first case, where calibration and customization is required, overall mean error rate for the calibration-set (reduced CASIA dataset) was found to be 0.3106%, and the error rates for other datasets such OULU-NPU and CASIA-SURF were 1.1928% and 2.2462% respectively. For the second case, which involved building a 1-class and 2-class model using CASIA alone and testing completely on OULU, the error rates were 5.86% and 2.34% respectively, comparable to the customized solution for OULU-NPU.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3