Research on gray correlation analysis and situation prediction of network information security

Author:

Ye Chengqiong,Shi Wenyu,Zhang Rui

Abstract

AbstractIn order to further improve the accuracy and efficiency of network information security situation prediction, this study used the dynamic equal-dimensional method based on gray correlation analysis to improve the GM (1, N) model and carried out an experiment on the designed network security situation prediction (NSSP) model in a simulated network environment. It was found that the predicted result of the improved GM (1, N) model was closer to the actual value. Taking the 11th hour as an example, the predicted value of the improved GM (1, N) model was 28.1524, which was only 0.8983 larger than the actual value; compared with neural network and Markov models, the error of the improved GM (1, N) model was smaller: the average error was only 2.3811, which was 67.88% and 70.31% smaller than the other two models. The improved GM (1, N) model had a time complexity that was 49.99% and 39.53% lower than neural network and Markov models; thus, it had high computational efficiency. The experimental results verify the effectiveness of the improved GM (1, N) model in solving the NSSP problem. The improved GM (1, N) model can be further promoted and applied in practice and deployed in the network of schools and enterprises to achieve network information security.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Signal Processing

Reference25 articles.

1. P. Bhandari, M. Singh, Semantic web based technique for network security situation awareness status prediction. Int. J. Nat. Eng. Sci. 14, 2229–6913 (2015)

2. A.D. Brucker, L. Brügger, B. Wolff, Formal firewall conformance testing: an application of test and proof techniques. Softw. Test. Verif. Rel. 25, 34–71 (2015). https://doi.org/10.1002/stvr.1544

3. Y. Hamid, V.R. Balasaraswathi, L. Journaux, M. Sugumaran, Benchmark Datasets for network intrusion detection: a review. Int. J. Netw. Secur. 20, 645–654 (2018)

4. R. Yadav, V. Kapoor, A hybrid cryptography technique for improving network security. Int. J. Comput. Appl. 141, 25–30 (2016)

5. T. Jirsik, P. Celeda, Toward real-time network-wide cyber situational awareness (2018), pp. 1–7. https://doi.org/10.1109/NOMS.2018.8406166

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PatchesNet: PatchTST-based multi-scale network security situation prediction;Knowledge-Based Systems;2024-09

2. VTion-PatchTST: Elevated PatchTST model for network security situation prediction;Computers and Electrical Engineering;2024-08

3. A Review of Hybrid Cyber Threats Modelling and Detection Using Artificial Intelligence in IIoT;Computer Modeling in Engineering & Sciences;2024

4. Single-Stage Multi-human Parsing via Point Sets and Center-based Offsets;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

5. A Practical Upper Bound for the Worst-Case Attribution Deviations;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3