Polycomblike protein PHF1b: a transcriptional sensor for GABA receptor activity

Author:

Saha Shamol,Hu Yinghui,Martin Stella C,Bandyopadhyay Sabita,Russek Shelley J,Farb David H

Abstract

Abstract Background The γ-aminobutyric acid (GABA) type A receptor (GABAAR) contains the recognition sites for a variety of agents used in the treatment of brain disorders, including anxiety and epilepsy. A better understanding of how receptor expression is regulated in individual neurons may provide novel opportunities for therapeutic intervention. Towards this goal we have studied transcription of a GABAAR subunit gene (GABRB1) whose activity is autologously regulated by GABA via a 10 base pair initiator-like element (β1-INR). Methods By screening a human cDNA brain library with a yeast one-hybrid assay, the Polycomblike (PCL) gene product PHD finger protein transcript b (PHF1b) was identified as a β1-INR associated protein. Promoter/reporter assays in primary rat cortical cells demonstrate that PHF1b is an activator at GABRB1, and chromatin immunoprecipitation assays reveal that presence of PHF1 at endogenous Gabrb1 is regulated by GABAAR activation. Results PCL is a member of the Polycomb group required for correct spatial expression of homeotic genes in Drosophila. We now show that PHF1b recognition of β1-INR is dependent on a plant homeodomain, an adjacent helix-loop-helix, and short glycine rich motif. In neurons, it co-immunoprecipitates with SUZ12, a key component of the Polycomb Repressive Complex 2 (PRC2) that regulates a number of important cellular processes, including gene silencing via histone H3 lysine 27 trimethylation (H3K27me3). Conclusions The observation that chronic exposure to GABA reduces PHF1 binding and H3K27 monomethylation, which is associated with transcriptional activation, strongly suggests that PHF1b may be a molecular transducer of GABAAR function and thus GABA-mediated neurotransmission in the central nervous system.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3