Phylogenomic analyses reveal a molecular signature linked to subterranean adaptation in rodents

Author:

Du Kang,Yang Liandong,He Shunping

Abstract

Abstract Background Genome-wide signatures of convergent evolution are widely expected but rarely revealed in animals. Subterranean rodent genome and transcriptome data produced by next-generation sequencing facilitate the use of phylogenetic methods to infer non-synonymous and synonymous substitution rates within coding regions, which can reveal changes at the molecular level that are correlated with the dramatic shift from a terrestrial to subterranean habitat. Results Our study used previously sequenced genome or transcriptome data of two subterranean rodents, the blind mole rat and naked mole rat, and their terrestrial relatives, the mouse and guinea pig, to investigate the genetic basis of rodent subterranean adaptation. An analysis of 4996 orthologous genes revealed that the substitution pace of coding sequences was significantly slower in the blind mole rat than in the mouse, and slower in the naked mole rat than in the guinea pig. The dN/dS ratio was significantly higher in the blind mole rat than in the mouse and in the naked mole rat than in the guinea pig. These patterns are most likely related to the longer generation time and lower effective population size of subterranean rodents caused by subterranean ecological constraints. We also identified some genes and gene ontology (GO) categories that might be candidates for adaptation to subterranean life. Conclusions Our study reveals a case of subterranean convergent evolution in rodents that is correlated with change in the pace and mode of molecular evolution observed at the genome scale. We believe that this genomic signature could have also evolved in other cases of subterranean convergence. Additionally, the genes that displayed the most radical changes in their patterns of evolution and their associated GO categories provide a strong basis for further comparative and functional studies, and potentially reveal molecular signatures of adaptation to subterranean life.

Funder

The Pilot Projects

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3