Phylodynamics of dengue virus 2 in Nicaragua leading up to the 2019 epidemic reveals a role for lineage turnover

Author:

Thongsripong Panpim,Edgerton Sean V.,Bos Sandra,Saborío Saira,Kuan Guillermina,Balmaseda Angel,Harris Eva,Bennett Shannon N.

Abstract

Abstract Background Dengue is a mosquito-borne viral disease posing a significant threat to public health. Dengue virus (DENV) evolution is often characterized by lineage turnover, which, along with ecological and immunological factors, has been linked to changes in dengue phenotype affecting epidemic dynamics. Utilizing epidemiologic and virologic data from long-term population-based studies (the Nicaraguan Pediatric Dengue Cohort Study and Nicaraguan Dengue Hospital-based Study), we describe a lineage turnover of DENV serotype 2 (DENV-2) prior to a large dengue epidemic in 2019. Prior to this epidemic, Nicaragua had experienced relatively low levels of DENV transmission from 2014 to 2019, a period dominated by chikungunya in 2014/15 and Zika in 2016. Results Our phylogenetic analyses confirmed that all Nicaraguan DENV-2 isolates from 2018 to 2019 formed their own clade within the Nicaraguan lineage of the Asian/American genotype. The emergence of the new DENV-2 lineage reflects a replacement of the formerly dominant clade presiding from 2005 to 2009, a lineage turnover marked by several shared derived amino acid substitutions throughout the genome. To elucidate evolutionary drivers of lineage turnover, we performed selection pressure analysis and reconstructed the demographic history of DENV-2. We found evidence of adaptive evolution by natural selection at the codon level as well as in branch formation. Conclusions The timing of its emergence, along with a statistical signal of adaptive evolution and distinctive amino acid substitutions, the latest in the NS5 gene, suggest that this lineage may have increased fitness relative to the prior dominant DENV-2 strains. This may have contributed to the intensity of the 2019 DENV-2 epidemic, in addition to previously identified immunological factors associated with pre-existing Zika virus immunity.

Funder

National Institutes of Health

National Institutes of Health (NIH)/National Institute of Allergy and Infectious Diseases

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3