Natriuretic peptides appeared after their receptors in vertebrates

Author:

Grandchamp Anna,Tahir Shifa,Monget Philippe

Abstract

Abstract Background In mammals, the natriuretic system contains three natriuretic peptides, NPPA, NPPB and NPPC, that bind to three transmembrane receptors, NPR1, NPR2 and NPR3. The natriuretic peptides are known only in vertebrates. In contrast, the receptors have orthologs in all the animal taxa and in plants. However, in non-vertebrates, these receptors do not have natriuretic properties, and most of their ligands are unknown. How was the interaction of the NP receptors and the NP established in vertebrates? Do natriuretic peptides have orthologs in non-vertebrates? If so, what was the function of the interaction? How did that function change? If not, are the NP homologous to ancestral NPR ligands? Or did the receptor’s binding pocket completely change during evolution? Methods In the present study, we tried to determine if the pairs of natriuretic receptors and their ligands come from an ancestral pair, or if the interaction only appeared in vertebrates. Alignments, modeling, docking, research of positive selection, and motif research were performed in order to answer this question. Results We discovered that the binding pocket of the natriuretic peptide receptors was completely remodeled in mammals. We found several peptides in non vertebrates that could be related to human natriuretic peptides, but a set of clues, as well as modeling and docking analysis, suggest that the natriuretic peptides undoubtedly appeared later than their receptors during animal evolution. We suggest here that natriuretic peptide receptors in non vertebrates bind to other ligands. Conclusions The present study further support that vertebrate natriuretic peptides appeared after their receptors in the tree of life. We suggest the existence of peptides that resemble natriuretic peptides in non-vertebrate species, that might be the result of convergent evolution.

Funder

Ministère de l'Enseignement Supérieur et de la Recherche

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3