Author:
DeLeo Danielle M.,Morrison Cheryl L.,Sei Makiri,Salamone Veronica,Demopoulos Amanda W. J.,Quattrini Andrea M.
Abstract
Abstract
Background
Deep-sea mussels in the subfamily Bathymodiolinae have unique adaptations to colonize hydrothermal-vent and cold-seep environments throughout the world ocean. These invertebrates function as important ecosystem engineers, creating heterogeneous habitat and promoting biodiversity in the deep sea. Despite their ecological significance, efforts to assess the diversity and connectivity of this group are extremely limited. Here, we present the first genomic-scale diversity assessments of the recently discovered bathymodioline cold-seep communities along the U.S. Atlantic margin, dominated by Gigantidas childressi and Bathymodiolus heckerae.
Results
A Restriction-site Associated DNA Sequencing (RADSeq) approach was used on 177 bathymodiolines to examine genetic diversity and population structure within and between seep sites. Assessments of genetic differentiation using single-nucleotide polymorphism (SNP) data revealed high gene flow among sites, with the shallower and more northern sites serving as source populations for deeper occurring G. childressi. No evidence was found for genetic diversification across depth in G. childressi, likely due to their high dispersal capabilities. Kinship analyses indicated a high degree of relatedness among individuals, and at least 10–20% of local recruits within a particular site. We also discovered candidate adaptive loci in G. childressi and B. heckerae that suggest differences in developmental processes and depth-related and metabolic adaptations to chemosynthetic environments.
Conclusions
These results highlight putative source communities for an important ecosystem engineer in the deep sea that may be considered in future conservation efforts. Our results also provide clues into species-specific adaptations that enable survival and potential speciation within chemosynthetic ecosystems.
Funder
U.S. Department of the Interior, Bureau of Ocean Energy Management, Environmental Studies Program
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献