Searching for signatures of positive selection in cytochrome b gene associated with subterranean lifestyle in fast-evolving arvicolines (Arvicolinae, Cricetidae, Rodentia)

Author:

Bondareva Olga V.ORCID,Potapova Nadezhda A.,Konovalov Kirill A.,Petrova Tatyana V.ORCID,Abramson Natalia I.ORCID

Abstract

Abstract Background Mitochondrial genes encode proteins involved in oxidative phosphorylation. Variations in lifestyle and ecological niche can be directly reflected in metabolic performance. Subterranean rodents represent a good model for testing hypotheses on adaptive evolution driven by important ecological shifts. Voles and lemmings of the subfamily Arvicolinae (Rodentia: Cricetidae) provide a good example for studies of adaptive radiation. This is the youngest group within the order Rodentia showing the fastest rates of diversification, including the transition to the subterranean lifestyle in several phylogenetically independent lineages. Results We evaluated the signatures of selection in the mitochondrial cytochrome b (cytB) gene in 62 Arvicolinae species characterized by either subterranean or surface-dwelling lifestyle by assessing amino acid sequence variation, exploring the functional consequences of the observed variation in the tertiary protein structure, and estimating selection pressure. Our analysis revealed that: (1) three of the convergent amino acid substitutions were found among phylogenetically distant subterranean species and (2) these substitutions may have an influence on the protein complex structure, (3) cytB showed an increased ω and evidence of relaxed selection in subterranean lineages, relative to non-subterranean, and (4) eight protein domains possess increased nonsynonymous substitutions ratio in subterranean species. Conclusions Our study provides insights into the adaptive evolution of the cytochrome b gene in the Arvicolinae subfamily and its potential implications in the molecular mechanism of adaptation. We present a framework for future characterizations of the impact of specific mutations on the function, physiology, and interactions of the mtDNA-encoded proteins involved in oxidative phosphorylation.

Funder

Российский Фонд Фундаментальных Исследований (РФФИ)

Research theme

Program of Presidium RAS “Dynamics of Gene Pools in Natural populations.”

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference65 articles.

1. Buffenstein R. Ecophysiological responses of subterranean rodents to underground habitats. In: Lacey E, Patton J, Cameron G, editors. Life underground: the biology of subterranean rodents, vol. 62. Illinois: University of Chicago Press; 2000. p. 110.

2. Vleck D. The energy cost of burrowing by the pocket gopher Thomomys bottae. Physiol Zool. 1979;52(2):122–36.

3. Nevo E. Mosaic evolution of subterranean mammals: Tinkering, regression, progression, and global convergence. In: Subterranean Rodents: News from Underground. Berlin: Springer Berlin Heidelberg. 2007:375–88.

4. Luo Y, Gao W, Gao Y, Tang S, Huang Q, Tan X, et al. Mitochondrial genome analysis of Ochotona curzoniae and implication of cytochrome c oxidase in hypoxic adaptation. Mitochondrion. 2008;8(5–6):352–7.

5. Da Silva CC, Tomasco IH, Hoffmann FG, Lessa EP. Genes and ecology: accelerated rates of replacement substitutions in the cytochrome b gene of subterranean rodents. Open Evol J. 2009;3:17–30.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3