Abstract
Abstract
Background
In the Tropical Eastern Pacific (TEP), four species of parrotfishes with complex phylogeographic histories co-occur in sympatry on rocky reefs from Baja California to Ecuador: Scarus compressus, S. ghobban, S. perrico, and S. rubroviolaceus. The most divergent, S. perrico, separated from a Central Indo-Pacific ancestor in the late Miocene (6.6 Ma). We tested the hypothesis that S. compressus was the result of ongoing hybridization among the other three species by sequencing four nuclear markers and a mitochondrial locus in samples spanning 2/3 of the latitudinal extent of the TEP.
Results
A Structure model indicated that K = 3 fit the nuclear data and that S. compressus individuals had admixed genomes. Our data could correctly detect and assign pure adults and F1 hybrids with > 0.90 probability, and correct assignment of F2s was also high in some cases. NewHybrids models revealed that 89.8% (n = 59) of the S. compressus samples were F1 hybrids between either S. perrico × S. ghobban or S. perrico × S. rubroviolaceus. Similarly, the most recently diverged S. ghobban and S. rubroviolaceus were hybridizing in small numbers, with half of the admixed individuals assigned to F1 hybrids and the remainder likely > F1 hybrids. We observed strong mito-nuclear discordance in all hybrid pairs. Migrate models favored gene flow between S. perrico and S. ghobban, but not other species pairs.
Conclusions
Mating between divergent species is giving rise to a region-wide, multispecies hybrid complex, characterized by a high frequency of parental and F1 genotypes but a low frequency of > F1 hybrids. Trimodal structure, and evidence for fertility of both male and female F1 hybrids, suggest that fitness declines sharply in later generation hybrids. In contrast, the hybrid population of the two more recently diverged species had similar frequencies of F1 and > F1 hybrids, suggesting accelerating post-mating incompatibility with time. Mitochondrial genotypes in hybrids suggest that indiscriminate mating by male S. perrico is driving pre-zygotic breakdown, which may reflect isolation of this endemic species for millions of years resulting in weak selection for conspecific mate recognition. Despite overlapping habitat use and high rates of hybridization, species boundaries are maintained by a combination of pre- and post-mating processes in this complex.
Publisher
Springer Science and Business Media LLC
Reference78 articles.
1. Mallet J. Hybridization as an invasion of the genome. Am Nat. 2005;20:229–37.
2. Kim S-C, Rieseberg LH. Genetic architecture of species differences in annual sunflowers: implications for adaptive trait introgression. Genetics. 1999;153:965–77.
3. Whitney KD, Randell RA, Rieseberg LH. Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annuus. Am Nat. 2006;167:794–807.
4. Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A, Nadeau NJ, Zimin AV, Hughes DST, Ferguson LC, Martin SH. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature. 2012;487:94.
5. Pardo-Diaz C, Salazar C, Baxter SW, Merot C, Figueiredo-Ready W, Joron M, McMillan WO, Jiggins CD. Adaptive introgression across species boundaries in Heliconius butterflies. PLoS Genet. 2012;8:e1002752.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献