Distribution of mutational fitness effects and of epistasis in the 5’ untranslated region of a plant RNA virus

Author:

Bernet Guillermo P.,Elena Santiago F.ORCID

Abstract

Abstract Background Understanding the causes and consequences of phenotypic variability is a central topic of evolutionary biology. Mutations within non-coding cis-regulatory regions are thought to be of major effect since they affect the expression of downstream genes. To address the evolutionary potential of mutations affecting such regions in RNA viruses, we explored the fitness properties of mutations affecting the 5’-untranslated region (UTR) of a prototypical member of the picorna-like superfamily, Tobacco etch virus (TEV). This 5’ UTR acts as an internal ribosomal entry site (IRES) and is essential for expression of all viral genes. Results We determined in vitro the folding of 5’ UTR using the selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE) technique. Then, we created a collection of single-nucleotide substitutions on this region and evaluated the statistical properties of their fitness effects in vivo. We found that, compared to random mutations affecting coding sequences, mutations at the 5’ UTR were of weaker effect. We also created double mutants by combining pairs of these single mutations and found variation in the magnitude and sign of epistatic interactions, with an enrichment of cases of positive epistasis. A correlation exists between the magnitude of fitness effects and the size of the perturbation made in the RNA folding structure, suggesting that the larger the departure from the predicted fold, the more negative impact in viral fitness. Conclusions Evidence that mutational fitness effects on the short 5’ UTR regulatory sequence of TEV are weaker than those affecting its coding sequences have been found. Epistasis among pairs of mutations on the 5’ UTR ranged between the extreme cases of synthetic lethal and compensatory. A plausible hypothesis to explain all these observations is that the interaction between the 5’ UTR and the host translational machinery was shaped by natural selection to be robust to mutations, thus ensuring the homeostatic expression of viral genes even at high mutation rates.

Funder

Ministerio de Economía y Competitividad

Generalitat Valenciana

European Commission

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3