Exact median-tree inference for unrooted reconciliation costs

Author:

Górecki Paweł,Markin Alexey,Eulenstein Oliver

Abstract

Abstract Background Solving median tree problems under tree reconciliation costs is a classic and well-studied approach for inferring species trees from collections of discordant gene trees. These problems are NP-hard, and therefore are, in practice, typically addressed by local search heuristics. So far, however, such heuristics lack any provable correctness or precision. Further, even for small phylogenetic studies, it has been demonstrated that local search heuristics may only provide sub-optimal solutions. Obviating such heuristic uncertainties are exact dynamic programming solutions that allow solving tree reconciliation problems for smaller phylogenetic studies. Despite these promises, such exact solutions are only suitable for credibly rooted input gene trees, which constitute only a tiny fraction of the readily available gene trees. Standard gene tree inference approaches provide only unrooted gene trees and accurately rooting such trees is often difficult, if not impossible. Results Here, we describe complex dynamic programming solutions that represent the first nonnaïve exact solutions for solving the tree reconciliation problems for unrooted input gene trees. Further, we show that the asymptotic runtime of the proposed solutions does not increase when compared to the most time-efficient dynamic programming solutions for rooted input trees. Conclusions In an experimental evaluation, we demonstrate that the described solutions for unrooted gene trees are, like the solutions for rooted input gene trees, suitable for smaller phylogenetic studies. Finally, for the first time, we study the accuracy of classic local search heuristics for unrooted tree reconciliation problems.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Reference53 articles.

1. Cracraft J, Donoghue MJ. Assembling the Tree of Life. New York: Oxford University Press; 2004.

2. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, Raine K, Jones D, Marshall J, Ramakrishna M, et al. The life history of 21 breast cancers. Cell. 2012; 149(5):994–1007.

3. Hufbauer RA, Marrs RA, Jackson AK, Sforza R, Bais HP, Vivanco JM, Carney SE. Population structure, ploidy levels and allelopathy of Centaurea maculosa (spotted knapweed) and C. diffusa (diffuse knapweed) in North America and Eurasia. In: Proceedings of the XI International Symposium on Biological Control of Weeds, Canberra Australia. Morgantown, WV: USDA Forest Service. Forest Health Technology Enterprise Team: 2003. p. 121–6.

4. Roux JJL, Wieczorek AM, Ramadan MM, Tran CT. Resolving the native provenance of invasive fireweed (Senecio madagascariensis Poir.) in the Hawaiian Islands as inferred Poir.) in the Hawaiian Islands as inferred from phylogenetic analysis. Divers Distrib. 2006; 12:694–702.

5. Harris SR, Cartwright EJP, Török ME, Holden MTG, Brown NM, Ogilvy-Stuart AL, Ellington MJ, Quail MA, Bentley SD, Parkhill J, Peacock SJ. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis. 2013; 13(2):130–6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3