Demographic history and divergence of sibling grouse species inferred from whole genome sequencing reveal past effects of climate change

Author:

Song KaiORCID,Gao Bin,Halvarsson Peter,Fang Yun,Klaus Siegfried,Jiang Ying-Xin,Swenson Jon E.,Sun Yue-Hua,Höglund Jacob

Abstract

Abstract Background The boreal forest is one of the largest biomes on earth, supporting thousands of species. The global climate fluctuations in the Quaternary, especially the ice ages, had a significant influence on the distribution of boreal forest, as well as the divergence and evolution of species inhabiting this biome. To understand the possible effects of on-going and future climate change it would be useful to reconstruct past population size changes and relate such to climatic events in the past. We sequenced the genomes of 32 individuals from two forest inhabiting bird species, Hazel Grouse (Tetrastes bonasia) and Chinese Grouse (T. sewerzowi) and three representatives of two outgroup species from Europe and China. Results We estimated the divergence time of Chinese Grouse and Hazel Grouse to 1.76 (0.46–3.37) MYA. The demographic history of different populations in these two sibling species was reconstructed, and showed that peaks and bottlenecks of effective population size occurred at different times for the two species. The northern Qilian population of Chinese Grouse became separated from the rest of the species residing in the south approximately 250,000 years ago and have since then showed consistently lower effective population size than the southern population. The Chinese Hazel Grouse population had a higher effective population size at the peak of the Last Glacial Period (approx. 300,000 years ago) than the European population. Both species have decreased recently and now have low effective population sizes. Conclusions Combined with the uplift history and reconstructed climate change during the Quaternary, our results support that cold-adapted grouse species diverged in response to changes in the distribution of palaeo-boreal forest and the formation of the Loess Plateau. The combined effects of climate change and an increased human pressure impose major threats to the survival and conservation of both species.

Funder

Major International Joint Research Programme

Stiftelsen Zoologisk Forskning

Uppsala University

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3