Abstract
Abstract
Background
Callitrichids comprise a diverse group of platyrrhine monkeys that are present across South and Central America. Their secondarily evolved small size and pointed claws allow them to cling to vertical trunks of a large diameter. Within callitrichids, lineages with a high affinity for vertical supports often engage in trunk-to-trunk leaping. This vertical clinging and leaping (VCL) differs from horizontal leaping (HL) in terms of the functional demands imposed on the musculoskeletal system, all the more so as HL often occurs on small compliant terminal branches. We used quantified shape descriptors (3D geometric morphometrics) and phylogenetically-informed analyses to investigate the evolution of the shape and size of the humerus and femur, and how this variation reflects locomotor behavior within Callitrichidae.
Results
The humerus of VCL-associated species has a narrower trochlea compared with HL species. It is hypothesized that this contributes to greater elbow mobility. The wider trochlea in HL species appears to correspondingly provide greater stability to the elbow joint. The femur in VCL species has a smaller head and laterally-oriented distal condyles, possibly to reduce stresses during clinging. Similarly, the expanded lesser trochanters visible in VCL species provide a greater lever for the leg retractors and are thus also interpreted as an adaptation to clinging. Evolutionary rate shifts to faster shape and size changes of humerus and femur occurred in the Leontocebus clade when a shift to slower rates occurred in the Saguinus clade.
Conclusions
Based on the study of evolutionary rate shifts, the transition to VCL behavior within callitrichids (specifically the Leontocebus clade) appears to have been an opportunity for radiation, rather than a specialization that imposed constraints on morphological diversity. The study of the evolution of callitrichids suffers from a lack of comparative analyses of limb mechanics during trunk-to-trunk leaping, and future work in this direction would be of great interest.
Funder
Einstein Stiftung Berlin
Deutsche Forschungsgemeinschaft
Humboldt-Universität zu Berlin
Publisher
Springer Science and Business Media LLC
Reference137 articles.
1. Bertram JE, Biewener AA. Allometry and curvature in the long bones of quadrupedal mammals. J Zool. 1992;226:455–67.
2. Botton-Divet L, Cornette R, Houssaye A, Fabre A-C, Herrel A. Swimming and running, a study of the convergence in long bone morphology among semi-aquatic mustelids (Carnivora: Mustelidae). Biol J Linn Soc. 2017;121:38–49.
3. Fabre A-C, Cornette R, Peigné S, Goswami A. Influence of body mass on the shape of forelimb in musteloid carnivorans. Biol J Linn Soc. 2013;110:91–103.
4. Hedrick BP, Mutumi GL, Munteanu VD, Sadier A, Davies KTJ, Rossiter SJ, et al. Morphological diversification under high integration in a hyper diverse mammal Clade. J Mamm Evol. 2019;27:1–13.
5. Kimura T. Long bone characteristics of primates. Z Morphol Anthropol. 1995;80:265–80.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献