Phenology-dependent cold exposure and thermal performance of Ostrinia nubilalis ecotypes

Author:

Wadsworth Crista B.ORCID,Okada Yuta,Dopman Erik B.

Abstract

Abstract Background Understanding adaptation involves establishing connections between selective agents and beneficial population responses. However, relatively little attention has been paid to seasonal adaptation, in part, because it requires complex and integrative knowledge about seasonally fluctuating environmental factors, the effects of variable phenology on exposure to those factors, and evidence for temporal specialization. In the European corn borer moth, Ostrinia nubilalis, sympatric pheromone strains exploit the same host plant (Zea mays) but may genetically differ in phenology and be reproductively “isolated by time.” Z strain populations in eastern North America have been shown to have a prolonged larval diapause and produce one annual mating flight (July), whereas E strain populations complete an earlier (June) and a later (August) mating flight by shortening diapause duration. Here, we find evidence consistent with seasonal “adaptation by time” between these ecotypes. Results We use 12 years of field observation of adult seasonal abundance to estimate phenology of ecotype life cycles and to quantify life-stage specific climatic conditions. We find that the observed reduction of diapause duration in the E strain leads their non-diapausing, active life stages to experience a ~ 4 °C colder environment compared to the equivalent life stages in the Z strain. For a representative pair of populations under controlled laboratory conditions, we compare life-stage specific cold tolerance and find non-diapausing, active life stages in the E strain have as much as a 60% greater capacity to survive rapid cold shock. Enhanced cold hardiness appears unrelated to life-stage specific changes in the temperature at which tissues freeze. Conclusions Our results suggest that isolation by time and adaptation by time may both contribute to population divergence, and they argue for expanded study in this species of allochronic populations in nature experiencing the full spectrum of seasonal environments. Cyclical selective pressures are inherent properties of seasonal habitats. Diverse fluctuating selective agents across each year (temperature, predation, competition, precipitation, etc.) may therefore be underappreciated drivers of biological diversity.

Funder

United States Department of Agriculture

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3