Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva

Author:

Haug Joachim T.,Labandeira Conrad C.,Santiago-Blay Jorge A.,Haug Carolin,Brown Susan

Abstract

Abstract Background Holometabolous insects are the most diverse, speciose and ubiquitous group of multicellular organisms in terrestrial and freshwater ecosystems. The enormous evolutionary and ecological success of Holometabola has been attributed to their unique postembryonic life phases in which nonreproductive and wingless larvae differ significantly in morphology and life habits from their reproductive and mostly winged adults, separated by a resting stage, the pupa. Little is known of the evolutionary developmental mechanisms that produced the holometabolous larval condition and their Paleozoic origin based on fossils and phylogeny. Results We provide a detailed anatomic description of a 311 million-year-old specimen, the oldest known holometabolous larva, from the Mazon Creek deposits of Illinois, U.S.A. The head is ovoidal, downwardly oriented, broadly attached to the anterior thorax, and bears possible simple eyes and antennae with insertions encircled by molting sutures; other sutures are present but often indistinct. Mouthparts are generalized, consisting of five recognizable segments: a clypeo-labral complex, mandibles, possible hypopharynx, a maxilla bearing indistinct palp-like appendages, and labium. Distinctive mandibles are robust, triangular, and dicondylic. The thorax is delineated into three, nonoverlapping regions of distinctive surface texture, each with legs of seven elements, the terminal-most bearing paired claws. The abdomen has ten segments deployed in register with overlapping tergites; the penultimate segment bears a paired, cercus-like structure. The anterior eight segments bear clawless leglets more diminutive than the thoracic legs in length and cross-sectional diameter, and inserted more ventrolaterally than ventrally on the abdominal sidewall. Conclusions Srokalarva berthei occurred in an evolutionary developmental context likely responsible for the early macroevolutionary success of holometabolous insects. Srokalarva berthei bore head and prothoracic structures, leglet series on successive abdominal segments – in addition to comparable features on a second taxon eight million-years-younger – that indicates Hox-gene regulation of segmental and appendage patterning among earliest Holometabola. Srokalarva berthei body features suggest a caterpillar-like body plan and head structures indicating herbivory consistent with known, contemporaneous insect feeding damage on seed plants. Taxonomic resolution places Srokalarva berthei as an extinct lineage, apparently possessing features closer to neuropteroid than other holometabolous lineages.

Funder

Alexander von Humboldt-Stiftung

German Academic Exchange Service

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Reference34 articles.

1. Kristensen NP. Phylogeny of the holometabolous insects: the most successful group of terrestrial organisms. Eur J Entom. 1997;96:237–53.

2. Wheat CW, Wahlberg N. Phylogenetic insights into the Cambrian explosion: the colonization of land and the evolution of flight in the Arthropoda. Syst Biol. 2013;62:93–109.

3. Nagy LM, Grbic M. Cell lineages in larval development and evolution of holometabolous insects. In: Hall BK, Wake MH, editors. The Origin and Evolution of Holometabolous Insects. San Diego: Academic; 1999. p. 275–300.

4. Truman JW, Riddiford LM. The origins of insect metamorphosis. Nature. 1999;401:477–52.

5. Kukalová-Peck J. Fossil history and the evolution of hexapod structures. In Insects of Australlia: A Textbook for Students and Research Workers. 2nd ed. Edited by Naumann ID, Carne PB, Lawrence JF, Nielsen ES, Sparadbery JP, Taylor RW, et al. Melbourne: Melbourne University Press, and Ithaca: Cornell University Press; 1991:141–79.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3