A novel SNP assay reveals increased genetic variability and abundance following translocations to a remnant Allegheny woodrat population

Author:

Muller-Girard Megan,Fowles Gretchen,Duchamp Joseph,Kouneski Samantha,Mollohan Cheryl,Smyser Timothy J.,Turner Gregory G.,Westrich Bradford,Doyle Jacqueline M.

Abstract

Abstract Background Allegheny woodrats (Neotoma magister) are found in metapopulations distributed throughout the Interior Highlands and Appalachia. Historically these metapopulations persisted as relatively fluid networks, enabling gene flow between subpopulations and recolonization of formerly extirpated regions. However, over the past 45 years, the abundance of Allegheny woodrats has declined throughout the species’ range due to a combination of habitat destruction, declining hard mast availability, and roundworm parasitism. In an effort to initiate genetic rescue of a small, genetically depauperate subpopulation in New Jersey, woodrats were translocated from a genetically robust population in Pennsylvania (PA) in 2015, 2016 and 2017. Herein, we assess the efficacy of these translocations to restore genetic diversity within the recipient population. Results We designed a novel 134 single nucleotide polymorphism panel, which was used to genotype the six woodrats translocated from PA and 82 individuals from the NJ population captured before and after the translocation events. These data indicated that a minimum of two translocated individuals successfully produced at least 13 offspring, who reproduced as well. Further, population-wide observed heterozygosity rose substantially following the first set of translocations, reached levels comparable to that of populations in Indiana and Ohio, and remained elevated over the subsequent years. Abundance also increased during the monitoring period, suggesting Pennsylvania translocations initiated genetic rescue of the New Jersey population. Conclusions Our results indicate, encouragingly, that very small numbers of translocated individuals can successfully restore the genetic diversity of a threatened population. Our work also highlights the challenges of managing very small populations, such as when translocated individuals have greater reproductive success relative to residents. Finally, we note that ongoing work with Allegheny woodrats may broadly shape our understanding of genetic rescue within metapopulations and across heterogeneous landscapes.

Funder

US Fish and Wildlife Service Wildlife Restoration Program

Pennsylvania Game Commission

Nature Conservancy

Indiana Department of Natural Resources

Purdue University

Towson University Jess & Mildred Fisher College of Science and Mathematics

New Jersey DEP Fish and Wildlife’s Endangered and Nongame Species Program

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3