Identifying potential provenances for climate-change adaptation using spatially variable coefficient models

Author:

Wesselkamp Marieke,Roberts David R.,Dormann Carsten F.

Abstract

Abstract Background Selection of climate-change adapted ecotypes of commercially valuable species to date relies on DNA-assisted screening followed by growth trials. For trees, such trials can take decades, hence any approach that supports focussing on a likely set of candidates may save time and money. We use a non-stationary statistical analysis with spatially varying coefficients to identify ecotypes that indicate first regions of similarly adapted varieties of Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) in North America. For over 70,000 plot-level presence-absences, spatial differences in the survival response to climatic conditions are identified. Results The spatially-variable coefficient model fits the data substantially better than a stationary, i.e. constant-effect analysis (as measured by AIC to account for differences in model complexity). Also, clustering the model terms identifies several potential ecotypes that could not be derived from clustering climatic conditions itself. Comparing these six identified ecotypes to known genetically diverging regions shows some congruence, as well as some mismatches. However, comparing ecotypes among each other, we find clear differences in their climate niches. Conclusion While our approach is data-demanding and computationally expensive, with the increasing availability of data on species distributions this may be a useful first screening step during the search for climate-change adapted varieties. With our unsupervised learning approach being explorative, finely resolved genotypic data would be helpful to improve its quantitative validation.

Funder

Alexander von Humboldt-Stiftung

Albert-Ludwigs-Universität Freiburg im Breisgau

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3