Ecological and phylogenetic aspects of the spring diet of three palaearctic species of swans

Author:

Kouzov Sergei A.,Kravchuk Anna V.,Koptseva Elena M.,Gubelit Yulia I.,Zaynagutdinova Elmira M.,Abakumov Evgeny V.

Abstract

AbstractThe quality of swans' nutrition at spring migration stopovers is important for their successful breeding. It is of great interest to study the differences in nutrition of different swan species when sharing the same habitat. Microscopic analysis of Cygnus olor, C. cygnus, and C. columbianus bewickii feces collected in the eastern part of the Gulf of Finland in February-April 2014–2019 was performed. We measured food preferences of the three swan species using non-metric multidimensional scaling (NMDS). The width and overlap of dietary niches were also calculated. The diet of C. olor consists almost entirely of soft submerged aquatic vegetation, mainly macroalgae. Samples of the other two species except macroalgae contained large amounts of young shoots and roots of rigid semi-submerged and coastal vegetation. The dietary niche of C. cygnus is the most isolated because it is dominated by thick rhizomes of Phragmites australis, which are hardly used by other swan species. The diet of Bewick’s swans was similar in many respects to that of the Mute swan, but Bewick’s swans much more often preferred vegetative parts of submerged and semi-submerged plants, such as Stuckenia pectinata, Potamogeton perfoliatus, Sparganium sp., Nuphar lutea, and others. Notably, the dietary niches of Mute swan and Whooper swan overlapped as much as possible in February March during a period of severe food shortage, in contrast to later periods in spring when food was more abundant and varied. In general, differences in diets are well explained by differences in the morphology of birds. Comparison of tarsometatarsus indices shows that C. olor is the most water-related species. C. olor has the longest neck and its beak has the strongest filter features, whereas beaks of the other two species shows noticeable “goose-like grazing” features. Moreover, C. Cygnus has the most powerful beak. These features are due to the history of species. The formation of C. olor occurred during the Miocene-Pliocene of the Palaearctic in the warm eutrophic marine lagoons of the Paratethys with abundant soft submerged vegetation. The evolution of C. cygnus and C. c. bewickii took place in Pleistocene. At that time, periglacial and thermokarst water bodies on permafrost became widespread in the Palearctic, as well as dystrophic peat lakes with much poorer submerged aquatic vegetation, but well-developed coastal and semi-submerged vegetation.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference157 articles.

1. Bauer К, Glutz von Blotzheim UN. Handbuch der Vögel Mitteleuropas. Band 2. Anseriformes. Frankfurt am Main: Akademische Verlagsgesellschaft; 1968.

2. Cramp S, Simmons KEL. The Birds of the Western Palearctic. Vol. 1: Ostrich to Ducks. Oxford–London–New-York: Oxford University Press; 1977.

3. Johnsgard PA. Ducks, Geese, and Swans of the World. Lincoln and London: Univ. Of Nebraska Press; 1978.

4. Johnsgard PA. Swans: Their Biology and Natural History. Zea E-Books Collection. 2016;38. http://digitalcommons.unl.edu/zeabook/38. Accessed 09 Apr 2023.

5. Menzbier MA. Birds of Russia, vol. 1. Moscow: Sabashnikov Publishing House; 1895.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3