Desiccation resistance and pigmentation variation reflects bioclimatic differences in the Drosophila americana species complex

Author:

Davis Jeremy S.ORCID,Moyle Leonie C.

Abstract

AbstractBackgroundDisentangling the selective factors shaping adaptive trait variation is an important but challenging task. Many studies—especially inDrosophila—have documented trait variation along latitudinal or altitudinal clines, but frequently lack resolution about specific environmental gradients that could be causal selective agents, and often do not investigate covariation between traits simultaneously. Here we examined variation in multiple macroecological factors across geographic space and their associations with variation in three physiological traits (desiccation resistance, UV resistance, and pigmentation) at both population and species scales, to address the role of abiotic environment in shaping trait variation.ResultsUsing environmental data from collection locations of three North AmericanDrosophilaspecies—D. americana americana, D. americana texanaandD. novamexicana—we identified two primary axes of macroecological variation; these differentiated species habitats and were strongly loaded for precipitation and moisture variables. In nine focal populations (three per species) assayed for each trait, we detected significant species-level variation for both desiccation resistance and pigmentation, but not for UV resistance. Species-level trait variation was consistent with differential natural selection imposed by variation in habitat water availability, although patterns of variation differed between desiccation resistance and pigmentation, and we found little evidence for pleiotropy between traits.ConclusionsOur multi-faceted approach enabled us to identify potential agents of natural selection and examine how they might influence the evolution of multiple traits at different evolutionary scales. Our findings highlight that environmental factors influence functional trait variation in ways that can be complex, and point to the importance of studies that examine these relationships at both population- and species-levels.

Funder

Indiana University Bloomington

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3