Author:
Zhang Xin,Gu Chenrui,Zhang Tianxu,Tong Botong,Zhang Heng,Wu Yueliang,Yang Chuanping
Abstract
Abstract
Background
Raw second-generation (2G) lignocellulosic biomass materials have the potential for development into a sustainable and renewable source of energy. Poplar is regarded as a promising 2G material (P. davidiana Dode×P. bolleana Lauch, P. bolleana, P. davidiana, P. euphratica, et al). However, their large-scale commercialization still faces many obstacles. For example, drought prevents sufficient irrigation or rainfall, which can reduce soil moisture and eventually destroy the chloroplast, the plant photosynthetic organelle. Heterosis is widely used in the production of drought-tolerant materials, such as the superior clone “Shanxinyang” selected from the offspring of Populus davidiana Dode×Populus bolleana Lauch. Because it produces good wood and is easily genetically transformed, “Shanxinyang” has become a promising material for use in tree genetics. It is also one of the most abundant biofuel plants in northern China. Understanding the genetic features of chloroplasts, the cp transcriptome and physiology is crucial to elucidating the chloroplast drought-response model.
Results
In this study, the whole genome of “Shanxinyang” was sequenced. The chloroplast genome was assembled, and chloroplast structure was analysed and compared with that of other popular plants. Chloroplast transcriptome analysis was performed under drought conditions. The total length of the “Shanxinyang” chloroplast genome was 156,190 bp, the GC content was 36.75%, and the genome was composed of four typical areas (LSC, IRa, IRb, and SSC). A total of 114 simple repeats were detected in the chloroplast genome of “Shanxinyang”. In cp transcriptome analysis, we found 161 up-regulated and 157 down-regulated genes under drought, and 9 cpDEGs was randomly selected to conduct reverse transcription (RT)–qPCR., in which the Log2 (fold change) was significantly consistent with the qPCR results. The analysis of chloroplast transcription under drought provided clues for understanding chloroplast function under drought. The phylogenetic position of “Shanxinyang” within Populus was analysed by using the chloroplast genome sequences of 23 Populus plants, showing that “Shanxinyang” belongs to Sect. Populus and is sister to Populus davidiana. Further, mVISTA analysis showed that the variation in non-coding (regulatory) regions was greater than that in coding regions, which suggests that further attention should be paid to the chloroplast in order to obtain new evolutionary or functional insights related to aspects of plant biology.
Conclusions
Our findings indicate that complex prokaryotic genome regulation occurs when processing transcripts under drought stress. The results not only offer clues for understanding the chloroplast genome and transcription features in woody plants but also serve as a basis for future molecular studies on poplar species.
Funder
National Natural Science Foundation of China
Overseas Expertise Introduction Project for Discipline Innovation
Heilongjiang Touyan Innovation Team Program
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference60 articles.
1. Li BS, Qin YR, Duan H, Yin WL, Xia XL. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot. 2011;62:3765–79.
2. Tang S, Liang HY, Yan DH, Zhao Y, Han X, Carlson JE. Populus euphratica, the transcriptomic response to drought stress. Plant Mol Biol. 2013;83:539–57.
3. Jordan WR, Ritchie JT. Influence of soil water stress on evaporation, root absorption, and internal water status of cotton. Plant Physiol. 1971;48:783–8.
4. Osakabe Y, Osakabe K, Shinozaki K, Tran LSP. Response of plants to water stress. Front Plant Sci. 2014;5:86.
5. Avramova V, Abdelgawad H, Asard H, Beemster GT. The growth zone of maize leaves subjected to drought stress offers unique possibilities to confirm transcriptome analysis with cellular, physiological and biochemical measurements. Commun Agric Appl Biol Sci. 2014;79:111–4.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献