Highly differentiated loci resolve phylogenetic relationships in the Bean Goose complex

Author:

Ottenburghs Jente,Honka Johanna,Heikkinen Marja E.,Madsen Jesper,Müskens Gerhard J. D. M.,Ellegren Hans

Abstract

Abstract Background Reconstructing phylogenetic relationships with genomic data remains a challenging endeavor. Numerous phylogenomic studies have reported incongruent gene trees when analyzing different genomic regions, complicating the search for a ‘true’ species tree. Some authors have argued that genomic regions of increased divergence (i.e. differentiation islands) reflect the species tree, although other studies have shown that these regions might produce misleading topologies due to species-specific selective sweeps or ancient introgression events. In this study, we tested the extent to which highly differentiated loci can resolve phylogenetic relationships in the Bean Goose complex, a group of goose taxa that includes the Taiga Bean Goose (Anser fabalis), the Tundra Bean Goose (Anser serrirostris) and the Pink-footed Goose (Anser brachyrhynchus). Results First, we show that a random selection of genomic loci—which mainly samples the undifferentiated regions of the genome—results in an unresolved species complex with a monophyletic A. brachyrhynchus embedded within a paraphyletic cluster of A. fabalis and A. serrirostris. Next, phylogenetic analyses of differentiation islands converged upon a topology of three monophyletic clades in which A. brachyrhynchus is sister to A. fabalis, and A. serrirostris is sister to the clade uniting these two species. Close inspection of the locus trees within the differentiated regions revealed that this topology was consistently supported over other phylogenetic arrangements. As it seems unlikely that selection or introgression events have impacted all differentiation islands in the same way, we are convinced that this topology reflects the ‘true’ species tree. Additional analyses, based on D-statistics, revealed extensive introgression between A. fabalis and A. serrirostris, which partly explains the failure to resolve the species complex with a random selection of genomic loci. Recent introgression between these taxa has probably erased the phylogenetic branching pattern across a large section of the genome, whereas differentiation islands were unaffected by the homogenizing gene flow and maintained the phylogenetic patterns that reflect the species tree. Conclusions The evolution of the Bean Goose complex can be depicted as a simple bifurcating tree, but this would ignore the impact of introgressive hybridization. Hence, we advocate that the evolutionary relationships between these taxa are best represented as a phylogenetic network.

Funder

Swedish Research Council

Knut och Alice Wallenbergs Stiftelse

Uppsala University

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3