Fossil amber reveals springtails’ longstanding dispersal by social insects

Author:

Robin NinonORCID,D’Haese Cyrille,Barden Phillip

Abstract

AbstractBackgroundDispersal is essential for terrestrial organisms living in disjunct habitats and constitutes a significant challenge for the evolution of wingless taxa. Springtails (Collembola), the sister-group of all insects (with Diplura), are reported since the Lower Devonian and are thought to have originally been subterranean. The order Symphypleona is reported since the early Cretaceous with genera distributed on every continent. This distribution implies an ability to disperse over oceans, however symphypleonan Collembola have never been reported in marine water contrary to other springtail orders. Despite being highly widespread, modern springtails are rarely reported in any kind of biotic association. Interestingly, the fossil record has provided occasional occurrences of Symphypleona attached by the antennae onto the bodies of larger arthropods.ResultsHere, we document the case of a ~ 16 Ma old fossil association: a winged termite and ant displaying not some, but 25 springtails attached or in close proximity to the body. The collembola exhibit rare features for fossils, reflecting their courtship and phoretic behaviours. By observing the modes of attachment of springtails on different arthropods, the sex representation and ratios in springtail antennal anatomies in new and previously reported cases, we infer a likely mechanism for dispersal in Symphypleona. By revealing hidden evidence of modern springtail associations with other invertebrates such as ants and termites, new compelling assemblages of fossil springtails, and the drastic increase of eusocial insects’ abundance during the Cenozoic (ants/termites comprising more than a third of insects in Miocene amber), we stress that attachment on winged castes of ants and termites may have been a mechanism for the worldwide dispersal of this significant springtail lineage. Moreover, by comparing the general constraints applying to the other wingless soil-dwelling arthropods known to disperse through phoresy, we suggest biases in the collection and observation of phoretic Symphypleona related to their reflexive detachment and infer that this behaviour continues today.ConclusionsThe specific case of tree resin entrapment represents the (so far) only condition uncovering the phoretic dispersal mechanism of springtails - one of the oldest terrestrial arthropod lineages living today.

Funder

French-American Fulbright Commission Scholar Program

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Reference93 articles.

1. Zeh DW, Zeh JA. Failed predation or transportation? Causes and consequences of phoretic behavior in the pseudoscorpion Dinocheirus arizonensis (Pseudoscorpionida: Chernetidae) (Pseudoscorpionida: Chernetidae). J Insect Behav. 1992;5:37–49.

2. Binns ES. Phoresy as migration - some functional aspects of phoresy in mites. Biol Rev. 1982;57:571–620.

3. Aguiar N, Bührnheim P. Phoretic pseudoscorpions associated with flying insects in Brazilian Amazonia. J Arachnol. 1998;26:452–9.

4. Farish DJ, Axtell RC. Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae). Acarologia. 1971;8:16–29.

5. Lesne P. Moeurs du “Limosina sacra”, phénomènes de transport mutuel chez les animaux articulés, origine du parasitisme chez les insectes diptères. Bull la Société Entomol Fr. 1896;162–5.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3