Abstract
Abstract
Background
Airborne environmental DNA (eDNA) research is an emerging field that focuses on the detection of species from their genetic remnants in the air. The majority of studies into airborne eDNA of plants has until now either focused on single species detection, specifically only pollen, or human health impacts, with no previous studies surveying an entire plant community through metabarcoding. We therefore conducted an airborne eDNA metabarcoding survey and compared the results to a traditional plant community survey.
Results
Over the course of a year, we conducted two traditional transect-based visual plant surveys alongside an airborne eDNA sampling campaign on a short-grass rangeland. We found that airborne eDNA detected more species than the traditional surveying method, although the types of species detected varied based on the method used. Airborne eDNA detected more grasses and forbs with less showy flowers, while the traditional method detected fewer grasses but also detected rarer forbs with large showy flowers. Additionally, we found the airborne eDNA metabarcoding survey required less sampling effort in terms of the time needed to conduct a survey and was able to detect more invasive species than the traditional method.
Conclusions
Overall, we have demonstrated that airborne eDNA can act as a sensitive and efficient plant community surveying method. Airborne eDNA surveillance has the potential to revolutionize the way plant communities are monitored in general, track changes in plant communities due to climate change and disturbances, and assist with the monitoring of invasive and endangered species.
Funder
pendleton-rogers endowed scholarship
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Gascon C, Brooks TM, Contreras-MacBeath T, Heard N, Konstant W, Lamoreux J, et al. The importance and benefits of species. Curr Biol. 2015;25:431–8.
2. Elzinga CL, Salzer DW, Willoughby JW. Measuring and monitoring plant populations. In: USDI-BLM Technical Reference 1730–1. Denver, Co: USDI-BLM; 1998.
3. Herrick JE, Van Zee JW, Havstad KM, Burkett LM, Whitford WG. Monitoring manual for grassland, shrubland, and savanna ecosystems, vol. II. Las Cruces: USDA-ARS Jornada Experimental Range and University of Arizona Press; 2005.
4. Garrard GE, Bekessy SA, McCarthy MA, Wintle BA. When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral Ecol. 2008;33:986–98.
5. Morrison LW. Observer error in vegetation surveys: a review. J Plant Ecol. 2015;9:367–79.
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献