Reevaluating scorpion ecomorphs using a naïve approach

Author:

Coelho Pedro,Kaliontzopoulou Antigoni,Sousa Pedro,Stockmann Mark,van der Meijden Arie

Abstract

Abstract Background Ecomorphs create the opportunity to investigate ecological adaptation because they encompass organisms that evolved characteristic morphologies under similar ecological demands. For over 50 years, scorpions have been empirically assigned to ecomorphs based on the characteristic morphologies that rock, sand, vegetation, underground, and surface dwellers assume. This study aims to independently test the existence of scorpion ecomorphs by quantifying the association between their morphology and ecology across 61 species, representing 14 families of the Scorpiones order. Results Without a priori categorization of species into ecomorphs, we identified four groups based on microhabitat descriptors, which reflect how scorpion ecospace is clustered. Moreover, these microhabitat groups, i.e., ecotypes, have significantly divergent morphologies; therefore, they represent ecomorphs. These ecomorphs largely correspond with the ones previously described in the literature. Therefore, we retained the names Lithophilous, Psammophilous, and Pelophilous, and proposed the name Phytophilous for vegetation dwellers. Finally, we sought to map the morphology-ecology association in scorpions and found that the morphological regions most tightly associated with ecology are at the extremities. Moreover, the major trend in ecomorphological covariation is that longer walking legs and relatively slender pedipalps (pincers) are associated with sandy microhabitats, while the inverse morphological proportions are associated with rocky microhabitats. Conclusions Scorpion ecomorphs are validated in a naïve approach, from ecological descriptors and whole body anatomy. This places them on a more solid quantitative footing for future studies of ecological adaptation in scorpions. Our results verify most of the previously defined ecomorphotypes and could be used as a current practice to understand the adaptive significance of ecological morphology.

Funder

Fundação para a Ciência e a Tecnologia

Agencia Estatal de Investigación

PORBIOTA — Portuguese E-Infrastructure for Information and Research on Biodiversity

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3