Genomic differentiation across the speciation continuum in three hummingbird species pairs

Author:

Henderson Elisa C.ORCID,Brelsford Alan

Abstract

Abstract Background The study of speciation has expanded with the increasing availability and affordability of high-resolution genomic data. How the genome evolves throughout the process of divergence and which regions of the genome are responsible for causing and maintaining that divergence have been central questions in recent work. Here, we use three pairs of species from the recently diverged bee hummingbird clade to investigate differences in the genome at different stages of speciation, using divergence times as a proxy for the speciation continuum. Results Population measures of relative differentiation between hybridizing species reveal that different chromosome types diverge at different stages of speciation. Using FST as our relative measure of differentiation we found that the sex chromosome shows signs of divergence early in speciation. Next, small autosomes (microchromosomes) accumulate highly diverged genomic regions, while the large autosomes (macrochromosomes) accumulate genomic regions of divergence at a later stage of speciation. Conclusions Our finding that genomic windows of elevated FST accumulate on small autosomes earlier in speciation than on larger autosomes is counter to the prediction that FST increases with size of chromosome (i.e. with decreased recombination rate), and is not represented when weighted average FST per chromosome is compared with chromosome size. The results of this study suggest that multiple chromosome characteristics such as recombination rate and gene density combine to influence the genomic locations of signatures of divergence.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3