Author:
Chen Jianhai,He Xuefei,Jakovlić Ivan
Abstract
AbstractThe arms race between humans and pathogens drives the evolution of the human genome. It is thus expected that genes from the interferon-regulatory factors family (IRFs), a critical family for anti-viral immune response, should be undergoing episodes of positive selection. Herein, we tested this hypothesis and found multiple lines of evidence for positive selection on the amino acid site Val129 (NP_006075.3:p.Ser129Val) of human IRF9. Interestingly, the ancestral reconstruction and population distribution analyses revealed that the ancestral state (Ser129) is conserved among mammals, while the derived positively selected state (Val129) was fixed before the “out-of-Africa” event ~ 500,000 years ago. The motif analysis revealed that this young amino acid (Val129) may serve as a dephosphorylation site of IRF9. Structural parallelism between homologous genes further suggested the functional effects underlying the dephosphorylation that may affect the immune activity of IRF9. This study provides a model in which a strong positive Darwinian selection drives a recent fixation of a hominin-specific amino acid leading to molecular adaptation involving dephosphorylation in an immune-responsive gene.
Funder
the fifth batch of technological innovation research projects in Chengdu
Postdoctoral Research and Development Fund of West China Hospital of Sichuan University
Short-Term Expert Fund of West China Hospital
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献