Author:
Mikryukov Vladimir,Abarenkov Kessy,Laffan Shawn,Robertson Tim,McTavish Emily Jane,Jeppesen Thomas Stjernegaard,Waller John,Blissett Matthew,Kõljalg Urmas,Miller Joseph T.
Abstract
Abstract
Background
Understanding biodiversity patterns is a central topic in biogeography and ecology, and it is essential for conservation planning and policy development. Diversity estimates that consider the evolutionary relationships among species, such as phylogenetic diversity and phylogenetic endemicity indices, provide valuable insights into the functional diversity and evolutionary uniqueness of biological communities. These estimates are crucial for informed decision-making and effective global biodiversity management. However, the current methodologies used to generate these metrics encounter challenges in terms of efficiency, accuracy, and data integration.
Results
We introduce PhyloNext, a flexible and data-intensive computational pipeline designed for phylogenetic diversity and endemicity analysis. The pipeline integrates GBIF occurrence data and OpenTree phylogenies with the Biodiverse software. PhyloNext is free, open-source, and provided as Docker and Singularity containers for effortless setup. To enhance user accessibility, a user-friendly, web-based graphical user interface has been developed, facilitating easy and efficient navigation for exploring and executing the pipeline. PhyloNext streamlines the process of conducting phylogenetic diversity analyses, improving efficiency, accuracy, and reproducibility. The automated workflow allows for periodic reanalysis using updated input data, ensuring that conservation strategies remain relevant and informed by the latest available data.
Conclusions
PhyloNext provides researchers, conservationists, and policymakers with a powerful tool to facilitate a broader understanding of biodiversity patterns, supporting more effective conservation planning and policy development. This new pipeline simplifies the creation of reproducible and easily updatable phylogenetic diversity analyses. Additionally, it promotes increased interoperability and integration with other biodiversity databases and analytical tools.
Funder
GEO-Microsoft Planetary Computer Programme
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献