Extrapolating potential crop damage by insect pests based on land use data: examining inter-regional generality in agricultural landscapes

Author:

Tabuchi KenORCID,Takahashi Akihiko,Uesugi RyujiORCID,Okudera Shigeru,Yoshimura HidetoORCID

Abstract

Abstract Background Inter-regional relationships between landscape factors and biological responses in natural conditions are important but difficult to predict because of the differences in each landscape context and local environment. To examine the inter-regional variability in relation to landscape factors and the biological response of an insect pest of rice, Stenotus rubrovittatus, we extrapolated a damage prediction model (the ‘original model’ of our previous study) for rice using land-use data. The ‘original model’ comprised as fixed factors the area of source habitat (i.e. pastures and graminoid-dominated fallow fields), soybean fields, and rice paddies within 300-m radii with research years as the random intercept. We hypothesized that the original model would be applicable to new regions, but the predictive accuracy would be reduced. We predicted that fitting a new extended model, adjusting the parameter coefficients of identical fixed factors of the ‘original model,’ and adding regional random intercepts would improve model performance (the ‘extended model’). A field experiment was conducted in two regions that had a similar landscape context with the original region, each in a different year of four years in total. The proportion of rice damage and surrounding land use within a 300-m radius was investigated, and the data were applied to the models and the applicability and accuracy of the models were examined. Results When the ‘original model’ was assigned to the combined data from the original and extrapolated regions, the relationship between the observed and the predicted values was statistically significant, suggesting that there was an inter-regional common relationship. The relationship was not statistically significant if the model was applied only to the new regions. The extended model accuracy improved by 14% compared with the original model and was applicable for unknown data within the examined regions as demonstrated by three-fold cross validation. Conclusions These results imply that in this pest–crop system, there is likely to be a common inter-regional biological response of arthropods because of landscape factors, although we need to consider local environmental factors. We should be able to apply such relationships to identify or prevent pest hazards by offering region-wide management options.

Funder

Japan Society for the Promotion of Science

Ministry of Agriculture, Forestry and Fisheries

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3