Water immersion tolerance by larval instars of stable fly, Stomoxys calcitrans, L1758 (Diptera: Muscidae) impairs the fitness performance of their subsequent stages

Author:

Baleba Steve B. S.ORCID

Abstract

Abstract Background In holometabolous insects, environmental factors experienced in pre-imaginal life stages affect the life-history traits within that stage and can also influence subsequent life stages. Here, I assessed tolerance to water immersion by the larval instars of the stable fly, Stomoxys calcitrans L. (Diptera: Muscidae) and its impact on the life-history traits of their subsequent life stages. Results After submerging the three larval instars of S. calcitrans in distilled water, I found that the first instar larvae remained active for longer as compared to the second and third instar larvae. Also, the first instar larvae took a longer period to recover from the stress-induced immobility when removed from the water and returned to ambient temperature. When I followed the development of individuals of each larval instar that survived from water immersion, I found that their developmental time, weight, pupation percentage, adult emergence percentage and adult weight were negatively affected by this stressor. However, the weight of S. calcitrans adults developed from immersed first larval instar individuals was not affected by water immersion whereas their counterparts developed from immersed second and third larval instars had lower body weight. This suggests that in S. calcitrans, water immersion stress at the earlier stage is less detrimental than that experienced at late stages. Conclusion This study provides a comparative overview of the fitness consequences associated with water immersion stress during S. calcitrans larval ontogeny. The results prove that the fitness shift induced by water immersion in S. calcitrans is stage-specific. My results illustrate the importance of considering each larval instar when assessing the impact of environmental factors on holometabolous insect performance as these may be decoupled by metamorphosis.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3