The adult shell matrix protein repertoire of the marine snail Crepidula is dominated by conserved genes that are also expressed in larvae

Author:

Lopez-Anido Rebecca N.,Batzel Grant O.,Ramirez Gabriela,Wang Yiqun,Neal Stephanie,Lesoway Maryna P.,Goodheart Jessica A.,Lyons Deirdre C.

Abstract

AbstractMollusca is a morphologically diverse phylum, exhibiting an immense variety of calcium carbonate structures. Proteomic studies of adult shells often report high levels of rapidly-evolving, ‘novel’ shell matrix proteins (SMPs), which are hypothesized to drive shell diversification. However, relatively little is known about the phylogenetic distribution of SMPs, or about the function of individual SMPs in shell construction. To understand how SMPs contribute to shell diversification a thorough characterization of SMPs is required. Here, we build tools and a foundational understanding of SMPs in the marine gastropod species Crepidula fornicata and Crepidula atrasolea because they are genetically-enabled mollusc model organisms. First, we established a staging system of shell development in C. atrasolea for the first time. Next, we leveraged previous findings in C. fornicata combined with phylogenomic analyses of 95 metazoan species to determine the evolutionary lineage of its adult SMP repertoire. We found that 55% of C. fornicata’s SMPs belong to molluscan orthogroups, with 27% restricted to Gastropoda, and only 5% restricted at the species level. The low percentage of species-restricted SMPs underscores the importance of broad-taxon sampling and orthology inference approaches when determining homology of SMPs. From our transcriptome analysis, we found that the majority of C. fornicata SMPs that were found conserved in C. atrasolea were expressed in both larval and adult stages. We then selected a subset of SMPs of varying evolutionary ages for spatial-temporal analysis using in situ hybridization chain reaction (HCR) during larval shell development in C. atrasolea. Out of the 18 SMPs analyzed, 12 were detected in the larval shell field. These results suggest overlapping larval vs. adult SMP repertoires. Using multiplexed HCR, we observed five SMP expression patterns and three distinct cell populations within the shell field. These patterns support the idea that modular expression of SMPs could facilitate divergence of shell morphological characteristics. Collectively, these data establish an evolutionary and developmental framework in Crepidula that enables future comparisons of molluscan biomineralization to reveal mechanisms of shell diversification.

Funder

National Science Foundation Faculty Early Career Development (CAREER) Award

National Institute of General Medical Sciences Maximizing Investigators' Research Award

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3