Author:
Hasenkamp Natascha,Solomon Terry,Tautz Diethard
Abstract
Abstract
Background
The interaction between viruses and their receptors in the host can be expected to lead to an evolutionary arms race resulting in cycles of rapid adaptations. We focus here on the receptor gene Xpr1 (xenotropic and polytropic retrovirus receptor 1) for murine leukemia viruses (MLVs). In a previous screen for selective sweeps in mouse populations we discovered that a population from Germany was almost monomorphic for Xpr1 haplotypes, while a population from France was polymorphic.
Results
Here we analyze Xpr1 sequences and haplotypes from a broad sample of wild mouse populations of two subspecies, M. m. domesticus and M. m. musculus, to trace the origins of this distinctive polymorphism pattern. We show that the high polymorphism in the population in France is caused by a relatively recent invasion of a haplotype from a population in Iran, rather than a selective sweep in Germany. The invading haplotype codes for a novel receptor variant, which has itself undergone a recent selective sweep in the Iranian population.
Conclusions
Our data support a scenario in which Xpr1 is frequently subject to positive selection, possibly as a response to resistance development against recurrently emerging infectious viruses. During such an infection cycle, receptor variants that may convey viral resistance can be captured from another population and quickly introgress into populations actively dealing with the infectious virus.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献