Author:
Strucken Eva M.,Lee Seung H.,Jang Gul W.,Porto-Neto Laercio R.,Gondro Cedric
Abstract
Abstract
Background
The main cattle breed in Korea is the brown Hanwoo, which has been under artificial selection within a national breeding program for several decades. Varieties of the Hanwoo known as Jeju Black and Chikso were not included in the breeding program and remained isolated from the effects of recent artificial selection advancements. We analysed the Jeju Black and Chikso populations in regards to their genetic variability, state of inbreeding, as well as level of differentiation from the mainland Hanwoo population.
Results
Jeju Black and Chikso were found to have small estimated effective population sizes (N
e
) of only 11 and 7, respectively. Despite a small N
e
, higher than expected heterozygosity levels were observed (0.303 and 0.306), however, lower allelic richness was found for the two island populations (1.76 and 1.77) compared to the mainland population (1.81). The increase in heterozygosity could be due to environmental disease challenges that promoted maintenance of higher genetic variability; however, no direct proof exists. Increased heterozygosity due to a first generation crossing of genetically different populations is not recorded. The differentiation between the Korean populations had F
ST
values between 0.014 and 0.036 which is not as high as the differentiation within European beef or dairy cattle breeds (0.047–0.111). This suggests that the three populations have not separated into independent breeds.
Conclusion
Results agree with an island model of speciation where the brown Hanwoo represents the ancestral breed, whilst the Jeju Black and Chikso diverge from this common ancestor, following different evolutionary trajectories. Nevertheless, differences are minor and whether Jeju Black and Chikso cattle will develop into discrete breeds or reintegrate with the main population has to be seen in the future and will largely depend on human management decisions. This offers a rare opportunity to accompany the development of new breeds but also poses challenges on how to preserve these incipient breeds and ensure their long term viability.
Funder
Next-Generation BioGreen 21
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference47 articles.
1. Decker JE, McKay SD, Rolf MM, Kim J, Molina Alcala A, Sonstegard TS, et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 2014;10:e1004254.
2. Bovine HapMap C, Gibbs RA, Taylor JF, Van Tassell CP, Barendse W, Eversole KA, et al. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science. 2009;324:528–32.
3. McKay BD, Zink RM. Sisyphean evolution in Darwin’s finches. Biol Rev Camb Philos Soc. 2014.
4. Farrington HL, Lawson LP, Clark CM, Petren K. The evolutionary history of darwin’s finches: speciation, gene flow, and introgression in a fragmented landscape. Evolution. 2014;68:2932–44.
5. Kim HC, Lee SH, Cho YM, Kim SW, Lim D, Park EW, et al. Genomic information and its application in hanwoo (Korean native cattle) breeding program - a mini review. Ann Anim Resour Sci. 2011;22:125–33.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献